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Motivation 

 One of our major concerns in studying simulation 
methods is figuring out how to sample efficiently 
from a complicated distribution 

 We may want accurate sampling of a small portion of 
the probability space 

 If we construct a Markov model of particles moving in a 
diffuse space and we want accurate sampling of the rate 
of particle collisions, we may have to simulate the model 
for an extremely long time to observe any collisions 
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Metropolis Method 
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 Metropolis models are very useful for looking at 
problems in thermodynamics 

 It is a technique for using a Markov model to 
determine the thermodynamic equilibrium of a 
system of discrete states for which we know potential 
energies 

 Method creates a Markov model whose stationary 
distribution is the distribution of states at the 
thermodynamic equilibrium of the system  

 Simulating the Markov model then sampling from the 
states of the system at thermodynamic equilibrium 



Metropolis Method 
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 Suppose we have a system of five states 

 If we define some possible ways of moving 
between states, then we end up with a system we 
can represent by a graph in which nodes represent 
states and edges represent allowed transitions 
between states 



Metropolis Method 
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 Assume that each state qi has a potential energy Ei 

 Thermodynamics tells us that at equilibrium, the 
stationary probability of being in state qi (or i) is 
described by a Boltzmann distribution 

 

 

 

 where k is Boltzmann’s constant and T is the absolute 
temperature 

 



Metropolis Method 
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 If the number of states is small, then we can 
calculate this distribution directly 

 Metropolis method is helpful when the state set is 
extremely large and we do not have time to 
explicitly compute the energy of each state 

 The Metropolis method creates a Markov model 
whose stationary distribution will be the 
Boltzmann distribution defined by the state 
energies 
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Metropolis Method 
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 Step 1: Pick a random neighbor of qi, which we 
will call qj , with probability 1/d , or qj=qi with 
probability 1-di/d if the degree of node i(di) is less 
than d (maximum degree of any node) 

 Step 2: If Ej  Ei, then move to qj  

 Step 3: If Ej > Ei, then with probability e-(Ej-Ei)/kT 
move to qj , otherwise stay in qi 

Definition: degree (or valency) of a vertex 

of a graph is the number of edges incident 

to the vertex, with loops counted twice 



Metropolis Method 
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 Note that we do not need to know anything about the 
global structure of the graph or the global energy 
landscape in order to simulate these transitions.  
 Just need to know the maximum degree of the entire graph, 

or even an upper bound on it and to have a way to determine 
the degree of the current node and the energy of each of its 
neighbors 

 If we have a very large state space but spend almost 
all time at equilibrium in a tiny fraction of the states 
then the Metropolis method provides a way to sample 
the equilibrium distribution efficiently without 
needing to explicitly create the full state graph 



Metropolis Method 
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 We can prove that this model will accurately 
sample from the Boltzmann distribution.  

 As long as the energies are finite, all of the edges are 
reversible; if you can go from qi to qj , you can go from qj 
to qi, although generally with different probabilities 

 That immediately tells us that the model is ergodic 
as long as the original graph is connected 

 As long as we wait enough steps, we have a nonzero 
probability of getting from any node to any other 



Metropolis Method 
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 The Markov models created by the Metropolis 
method not only have a stationary distribution; 
they also obey a stronger condition called detailed 
balance (also known as microreversibility) 

 This property says that given any two states qi and qj 
with transition probabilities pij and pji and stationary 
probabilities i and j , then, 



Metropolis Method: Caveats 
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 The Metropolis method is thermodynamically correct, 
but it is not generally kinetically correct  
 This means that if we have all of the energies right, then the 

stationary distribution will be the thermodynamic 
equilibrium distribution, but the pathways between states 
may not be in any way connected to how the real system will 
move between states 

 Mixing times can be very long, especially if the 
transitions are poorly chosen 
 Method can easily get stuck in local minima for long periods 

of time or have difficulty finding the correct trajectories.  

 Difficult to judge whether the method is getting a good 
sample or is temporarily stuck in one part of the state space 



Generalizing the Metropolis Method 
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 Nothing in the algorithm that requires stationary 
distribution to be a Boltzmann distribution 

 For any state qi, we can find transition probabilities to 
each neighbor state qj by knowing only the ratio of their 
stationary probabilities 

 Ignore the energies and work directly with the ratios 

 Step 1: Pick a random neighbor of qi, which we 
will call qj , with probability 1/d , or qj=qi with 
probability 1-di/d if the degree of node i(di) is less 
than d (maximum degree of any node) 

 Step 2: If  j/i  1, then move to qj  

 Step 3: If j/I < 1, then with probability j/i 
move to qj , otherwise stay in qi 



Metropolis as an Optimization Method 
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 Given a discrete optimization problem, we can declare that 
each possible solution to the problem has an ‘‘energy’’ 
which is determined by the value of the optimization 
metric on that solution 

 If we define ‘‘moves’’ between possible solutions, then a 
Metropolis simulation will be expected to move toward 
low-energy (high-quality) solutions 

 Example: Travelling salesman problem 



Metropolis as an Optimization Method 
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 Simulated Annealing 
 Exactly the same as simulating a Metropolis model, except 

that we start with high model temperature and we 
gradually reduce model temperature to reach solution 

 Limit of very high temperature: all transitions are allowed 

 

 

 Limit of very low temperature: no transitions are allowed 

 

 

 Performance will depend on cooling schedule 



Gibbs Sampling 
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 Gibbs sampling is particularly useful for sampling 
from joint distributions on many variables 

 We accomplish this by allowing states of the 
Markov model to correspond to possible 
assignments of the full state vector of the jointly 
distributed variables  

 We then allow transitions corresponding to 
possible changes in a single element of the state 
vector 



Gibbs Sampling 
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 Assume we are given a joint distribution, 

 

 where R1;R2; … ;Rn are the ranges of the respective 
random variables.  

 The state set of the Gibbs sampler is the product 
of the ranges of the variables: 

 

 That is, there is one state for each possible assignment 
of values to the random variables 



Gibbs Sampling 
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 There is a transition possible for any change of a 
single random variable 

 The probability of making any possible transition obeys 
the following density: 

 

Step 1: Pick a variable Xi uniformly at random. 

Step 2: Sample a new value for that one variable from the conditional distribution of that 

variable, given the current values of all of the other variables: 

 

 

Step 3: Repeat Step 2 to produce a correct sample of the joint distribution of the variables 



Importance Sampling 
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 Metropolis and Gibbs sampling methods provide 
ways of sampling from distributions that may be 
hard to express analytically 

 Sometimes, though, having a correct sampler is 
not enough, we also need the sampler to be 
efficient, in that it gets close to its stationary 
distribution in a small number of steps 

 Importance sampling is a technique we can use 
when we have a sampler for a given distribution 
but want to accelerate it 



Importance Sampling 
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 Basic idea is simple: Given a model with state set: 

 

and corresponding stationary distribution: 

 

we construct a new model with the same state set Q but 
biased stationary distribution,  

 

We then sample from distribution        but adjust the 
estimated frequencies for each state qi sampled from               
by a factor of 1/wi 



Importance Sampling 
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 The result is an accurate estimator of i, but one in 
which the variance of the estimates was changed 

 In particular, we generally want to choose the weights 
wi such that the variance of the model is reduced, 
leading to faster estimation of  

 One common use of importance sampling is to 
bias a model toward those states that account for 
the majority of the probability density, thus 
accelerating estimation of those states 



Importance Sampling: Example 
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 Suppose we have a Monte Carlo model of protein-
folding with the following distribution: 

 

 We can generate a modified distribution by attaching 
a penalty of ek ri to each state, where ri is the radius of 
gyration of state qi and k is a scaling constant 

 

 

 Result will be a sampler that is likely to sample 
compact states more quickly 



Importance Sampling: Example 
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 We know each ri and can therefore find the vector, 

 

 Solve for Z using the fact that since  is a 
probability distribution 

 

 

 Finally, we can estimate, 

 

 

 



Umbrella Sampling 
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 Special case of importance sampling commonly 
used in statistical physics problems to give more 
accurate estimates of frequencies of rare events in 
a model 

 Umbrella sampling proceeds in essentially the 
same way as general importance sampling, but is 
biased so that our modified chain spends a 
disproportionate amount of time in the portion of 
space we want to estimate accurately 

 For example, reverse weights in previous example to 



Umbrella Sampling 
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 Algorithm similar to that of Importance Sampling 
but with the new weight functions 



Assignments 

 Implement the following: 

 Metropolis method 

 Simulated annealing 

 Gibbs sampling 

 Importance sampling 

 Umbrella sampling 
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