THE DISCRETE FOURIER
TRANSFORM

8.0 INTRODUCTION

In Chapters 2 and 3 we discussed the representation of sequences and linear time-
invariant systems in terms of the Fourier and z-transforms, respectively. For finite-
duration sequences, it is possible to develop an alternative Fourier representation,
referred to as the discrete Fourier transform (DFT). The DFT is itself a sequence rather
than a function of a continuous variable, and it corresponds to samples, equally spaced
in frequency, of the Fourier transform of the signal. In addition to its theoretical im-
portance as a Fourier representation of sequences, the DFT plays a central role in
the implementation of a variety of digital signal-processing algorithms. This is because
efficient algorithms exist for the computation of the DFT. These algorithms will be
discussed in detail in Chapter 9. The application of the DFT to spectral analysis will be
described in Chapter 10.

Although several points of view can be taken toward the derivation and inter-
pretation of the DFT representation of a finite-duration sequence, we have chosen to
base our presentation on the relationship between periodic sequences and finite-length
sequences. We will begin by considering the Fourier series representation of periodic
sequences. While this representation is important in its own right, we are most often in-
terested in the application of Fourier series results to the representation of finite-length
sequences. We accomplish this by constructing a periodic sequence for which each period
isidentical to the finite-length sequence. As we will see, the Fourier series representation
of the periodic sequence corresponds to the DFT of the finite-length sequence. Thus,
our approach is to define the Fourier series representation for periodic sequences and to
study the properties of such representations. Then we repeat essentially the same deriva-
tions, assuming that the sequence to be represented is a finite-length sequence. This
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542 The Discrete Fourier Transform Chap. 8

approach to the DFT empbhasizes the fundamental inherent periodicity of the DFT
representation and ensures that this periodicity is not overlooked in applications of the
DFT.

8.1 REPRESENTATION OF PERIODIC SEQUENCES:
THE DISCRETE FOURIER SERIES

Consider a sequence ¥[n] that is periodic! with period N, so that ¥[n] = ¥[n + r N] for
any integer values of n and r. As with continuous-time periodic signals, such a sequence
can be represented by a Fourier series corresponding to a sum of harmonically related
complex exponential sequences, i.e., complex exponentials with frequencies that are
integer multiples of the fundamental frequency (27/N) associated with the periodic
sequence ¥[n]. These periodic complex exponentials are of the form

ex[n] = /PN — o [n +r N, (8.1)
where £ is an integer, and the Fourier series representation then has the form*
1 - ,
v — (2r/N)Ykr
X[n] = N E,; X[k]e’ " (8.2)

The Fourier series representation of a continuous-time periodic signal gener-
ally requires infinitely many harmonically related complex exponentials, whereas the
Fourier series for any discrete-time signal with period N requires only N harmonically
related complex exponentials. To see this, note that the harmonically related com-
plex exponentials ex[n] in Eq. (8.1) are identical for values of k separated by N: i.e..
eo[n] = en[n], e1[n] = ens1[n], and, in general,

ek+€N[n] — e}'(2n/N)(k+€N)n _ ej(Z:r/N)kneﬁné’n — ej(ZJr/N)kn — ek[n]. (83)
where ¢ is an integer. Consequently, the set of N periodic complex exponentials ey[n],
ey[n]. ..., en—1[n] defines all the distinct periodic complex exponentials with frequencies

thatare integer multiples of (27/N). Thus, the Fourier series representation of a periodic
sequence X[n] need contain only N of these complex exponentials, and hence, it has the
form

Z

N
*n] = X[k]e/ 2/ Nkn (8.4)
k

Il
=

To obtain the sequence of Fourier series coefficients X[k] from the periodic se-
quence ¥[n], we exploit the orthogonality of the set of complex exponential sequences.
After multiplying both sides of Eq. (8.4) by e /@*/N)rm and summing from n = 0 to
n = N — 1, we obtain

N-1 ' N1 N-T ’
Z ¥[nJe T/ NIrm — Z N Z X [k]e/ 2/ N)k=r)n (8.5)
n=0 =0 " k=0

'Henceforth, we will use the tilde (~) to denote periodic sequences whenever it is important to clearly
distinguish between periodic and aperiodic sequences.

>The multiplicative constant 1/N is included in Eq. (8.2) for convenience. It could also be absorbed
into the definition of )?[k].
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After interchanging the order of summation on the right-hand side, we see that Eq. (8.5)

becomes
N-1

N—1 N-]
. . 1 - ,
> x[nje 1O =N R (k] L—V » :e"(“”/N’“")”} . (8.6)
k=0

n=0 n={(
The following identity expresses the orthogonality of the complex exponentials:

: NE_I 1. k—r =mN. maninteger
— JQr/N)k=r)n _ . —r = . !
N ()e {0. otherwise. (8.7)
H=

This identity can easily be proved (see Problem 8.51). and when it is applied to the
summation in brackets in Eq. (8.6), the result is

N—1

Zi[n]e“”z”/m’” = X[r]. (8.8)

n=0

Thus, the Fourier series coefficients X[k] in Eq. (8.4) are obtained from ¥[#n] by the

relation
N-1

X[kl =) x[n]e /G (8.9)
n=0
Note that the sequence X[k] is periodic with period N; ie., X[0] = X[N], X[1] =
X[N + 1], and, more generally,
N—1
/\7[/{—}— N] = Z_i,[n]e4](2rr/N)(k+N)n

n=0

N—-1
— (Zf[n]e—j(er/N)kn) efj2rm — /\7[/(]

n=0
for any integer k.

The Fourier series coefficients can be interpreted to be a sequence of finite length,
given by Eq. (8.9) fork =0, ..., (N — 1), and zero otherwise, or as a periodic sequence
defined for all & by Eq. (8.9). Clearly, both of these interpretations are acceptable, since
in Eq. (8.4) we use only the values of X[k] for 0 < & < (N —1). An advantage of inter-
preting the Fourier series coefficients X [k] as a periodic sequence is that there is then a
duality between the time and frequency domains for the Fourier series representation
of periodic sequences. Equations (8.9) and (8.4) together are an analysis—synthesis pair
and will be referred to as the discrete Fourier series (DFS) representation of a periodic
sequence. For convenience in notation. these equations are often written in terms of
the complex quantity

Wy = e /TN, (8.10)
With this notation, the DFS analysis—synthesis pair is expressed as follows:
N-1
Analysis equation:  X[k] = Z F[n)WE". (8.11)
n=0
=
Synthesis equation: *[n] = N X[k]W ", (8.12)
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In both of these equations, X[k] and ¥[n] are periodic sequences. We will sometimes

find it convenient to use the notation

in] 25 X4 (8.13)

to signify the relationships of Egs. (8.11) and (8.12). The following examples illustrate
the use of those equations.

Example 8.1 Discrete Fourier Series of a Periodic
Impulse Train

We consider the periodic impulse train

cr = _J 1, n=rN. ranyinteger,
x[n] = E Sln—rN]= {0, otherwise, (8.14)
Since ¥[n] = §[n] for 0 < n < N — 1, the DFS coefficients are found, using Eq. (8.11),
to be
N-1
XK= sln]Wy" = Wy =1. (8.15)

n=l()

In this case. X[k] is the same for all k. Thus, substituting Eq. (8.15) into Eq. (8.12)
leads to the representation

¢ 1 N-1 1 N-1
fn]= > sn-rN]= < > Wit = 5 D etk (8.16)
r=—oc k=0 k=0

(Note the similarity to the orthogonality relation of Eq. (8.7).)

Example 8.1 produced a useful representation of a periodic impulse train in terms
of a sum of complex exponentials, where all the complex exponentials have the same
magnitude and phase and add to unity at integer multiples of N and to zero for all other
integers. If we look closely at Eqgs. (8.11) and (8.12), we see that the two equations are
very similar, differing only in a constant multiplier and the sign of the exponents. This
duality between the periodic sequence X[n] and its discrete Fourier series coefficients
X[k] is illustrated in the following example.

Example 8.2 Duality in the Discrete Fourier Series

Here we let the discrete Fourier series coefficients be the periodic impulse train

Y[k = > Nilk—rN].
r=—oc
Substituting Y [k] into Eq. (8.12) gives
=
] = D ONSIWT = W0 =1,
k=0

In this case, ¥(n] = 1 for all n. Comparing this result with the results for X[r] and X[k]
of Example 8.1, we see that Y[k] = N¥[k] and $[n] = X[n]. In Section 8.2.3, we will
show that this example is a special case of a more general duality property.
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If the sequence X[#n] is equal to unity over only part of one period, we can also ob-
tain a closed-form expression for the DFS coefficients. This is illustrated by the following
example.

Example 8.3 The Discrete Fourier Series of a Periodic
Rectangular Pulse Train

For this example, ¥[n] is the sequence shown in Figure 8.1, whose period is N = 10.

X[n]

-10 012345678910 n

Figure B.1 Pericdic sequence with period N = 10 for which the Fourier series
representation is to be computed.

From Egq. (8.11),
4 4
X[k =) Wiy =Y eitr/ikn, (8.17)
n=0 n=0
This finite sum has the closed form

Sk .
1 - Wl(;\ — o JATk/10) sin(wk/2)

X[k] = .
(K] 1- W sin(k/10)

(8.18)

The magnitude and phase of the periodic sequence X[k] are shown in Figure 8.2.

(X[k]I
5

-1012345678910 15 20 k

(a)

% denotes indeterminate <
= (magnitude = ()

(b)

Figure 8.2 Magnitude and phase of the Fourier series coefficients of the sequence
of Figure 8.1.
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We have shown that any periodic sequence can be represented as a sum of complex
exponential sequences. The key results are summarized in Egs. (8.11) and (8.12). As we
will see, these relationships are the basis for the DFT. which focuses on finite-length
sequences. Before discussing the DFT, however, we will consider some of the basic
properties of the DFS representation of periodic sequences. and then we will show how
we can use the DFS representation to obtain a Fourier transform representation of
periodic signals.

8.2 PROPERTIES OF THE DISCRETE FOURIER SERIES

Just as with Fourier series and Fourier and Laplace transforms for continuous-time
signals, and with z-transforms for discrete-time aperiodic sequences, certain properties
of discrete Fourier series are of fundamental importance to its successful use in signal-
processing problems. In this section, we summarize these important properties. It is
not surprising that many of the basic properties are analogous to properties of the
z-transform and Fourier transform. However, we will be careful to point out where the
periodicity of both ¥[n] and X[k] results in some important distinctions. Furthermore, an
exact duality exists between the time and frequency domains in the DFS representation
that does not exist in the Fourier transform and z-transform representation of sequences.

8.2.1 Linearity
Consider two periodic sequences ¥,[n] and ¥;[#], both with period N, such that

DFS

%1[n] < X [k] (8.19a)
and
%] €25 X[k (8.19b)
Then
axi[n] + bia[n] €23 a Xi[K] + bXs[A]. (8.20)

This linearity property follows immediately from the form of Egs. (8.11) and (8.12).

8.2.2 Shift of a Sequence

If a periodic sequence %[n] has Fourier coefficients X[k], then ¥[n — m] is a shifted
version of ¥[n], and

i[n —m] <3 WEm X[A]. (8.21)

The proof of this property is considered in Problem 8.52. Any shift that i1s greater
than or equal to the period (i.e., m > N) cannot be distinguished in the time domain
from a shorter shift m, such that m = m; + m;N, where m; and m; are integers
and 0 < m; < N — 1. (Another way of stating this is that m; = m modulo N or,
equivalently, m, is the remainder when m is divided by N.) It is easily shown that with
this representation of m, W™ = W™ i.e., as it must be, the ambiguity of the shift in

the time domain is also manifest in the frequency-domain representation.
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Because the sequence of Fourier series coefficients of a periodic sequence is a
periodic sequence, a similar result applies to a shift in the Fourier coefficients by an
integer £. Specifically,

_nE - DFS &
W, k[n] < X[k -¢]. (8.22)

Note the difference in the sign of the exponents in Egs. (8.21) and (8.22).

8.2.3 Duality

Because of the strong similarity between the Fourier analysis and synthesis equations
in continuous time, there is a duality between the time domain and frequency domain.
However, for the discrete-time Fourier transform of aperiodic signals, no similar duality
exists, since aperiodic signals and their Fourier transforms are very different kinds of
functions: Aperiodic discrete-time signals are, of course, aperiodic sequences, while their
Fourier transforms are always periodic functions of a continuous frequency variable.
From Eqs. (8.11) and (8.12), we see that the DFS analysis and synthesis equations
differ only in a factor of 1/N and in the sign of the exponent of Wy. Furthermore, a
periodic sequence and its DFS coefficients are the same kinds of functions; they are both
periodic sequences. Specifically, taking account of the factor 1/N and the difference in
sign in the exponent between Egs. (8.11) and (8.12). it follows from Eq. (8.12) that

Ni[-n] =Y X[k]W}" (8.23)
k=0

or, interchanging the roles of n and kin Eq. (8.23),
N

—

Ni[—k] =Y X)W, (8.24)

We see that Eq. (8.24) is similar to Eq. (8.11). In other words, the sequence of DFS
coefficients of the periodic sequence X[n]is N¥[—k],i.e., the original periodic sequence
in reverse order and multiplied by N. This duality property is summarized as follows:
It

#[n] 255 X[k, (8.252)
then
X[n] 25 Nx[—k]. (8.25b)

8.2.4 Symmetry Properties

As we discussed in Section 2.8, the Fourier transform of an aperiodic sequence has
a number of useful symmetry properties. The same basic properties also hold for the
DEFS representation of a periodic sequence. The derivation of these properties, which is
similar in style to the derivations in Chapter 2, is left as an exercise. (See Problem 8.53.)
The resulting properties are summarized for reference as properties 9-17 in Table 8.1
in Section 8.2.6.
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8.2.5 Periodic Convolution

Let ¥;[n] and X;[r] be two periodic sequences, each with period N and with discrete
Fourier series coefficients denoted by X;[k] and X;[k], respectively. If we form the
product

X3[K] = X, [K] X2([K], (8.26)

then the periodic sequence %3[n] with Fourier series coefficients X3[k] is

N-1
wln] =Y x[mlx(n —m). (8.27)
m=0

This result is not surprising, since our previous experience with transforms suggests
that multiplication of frequency-domain functions corresponds to convolution of time-
domain functions and Eq. (8.27) looks very much like a convolution sum. Equa-
tion (8.27) involves the summation of values of the product of %, [m] with %> [n—m], which
is a time-reversed and time-shifted version of ¥[m], just as in aperiodic discrete con-
volution. However, the sequences in Eq. (8.27) are all periodic with period N, and the
summation is over only one period. A convolution in the form of Eq. (8.27) is referred
to as a periodic convolution. Just as with aperiodic convolution, periodic convolution is
commutative; i.e.,

N-1
%3l = xmlxi[n — m]. (8.28)
m=0

To demonstrate that X3[k], given by Eq. (8.26), is the sequence of Fourier coef-
ficients corresponding to %3[n] given by Eq. (8.27), let us first apply the DFS analysis
equation (8.11) to Eq. (8.27) to obtain

N-1 /N-1
X[k =) (Z %1 [m]%a[n — m]) WA, (8.29)
n=0 m=0
which, after we interchange the order of summation, becomes
) N-1 N-1
X;[k] = Z x1[m] (Z X[n - m] W/\‘,n) . (8.30)
m=0 n=0

The inner sum on the index n is the DFS for the shifted sequence %;[n — m]. Therefore,
from the shifting property of Section 8.2.2, we obtain

N—1
> xln — mWA = W Xo[K],
n=0
which can be substituted into Eq. (8.30) to yield
N-1 N—1
Xalk] =) 0 [m]W" X, [k] = (Z % [m]W,’(,’") X, [k] = Xi[k] Xo[k].  (8.31)
=0

m=0

In summary,

N-1
3" xi[mlga[n — m] &5 X\ [K) Xo[K]. (8.32)
=0
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The periodic convolution of periodic sequences thus corresponds to multiplication of
the corresponding periodic sequences of Fourier series coefficients.

Since periodic convolutions are somewhat different from aperiodic convolutions,
it is worthwhile to consider the mechanics of evaluating Eq. (8.27). First note that
Eq. (8.27) calls for the product of sequences ¥ {m] and ¥>[n —m] = X:[—(m—n)] viewed
as functions of m with # fixed. This is the same as for an aperiodic convolution. but with
the following two major differences:

1. The sum is over the finite interval 0 <m < N — |.

2. The values of ¥2[n — m] in the interval 0 < m < N — 1 repeat periodically for m
outside of that interval.

These details are illustrated by the following example.

Example 8.4 Periodic Convolution

An illustration of the procedure for forming the periodic convolution of two periodic
sequences corresponding to Eq. (8.27) is given in Figure 8.3, where we have illustrated

Xs[m]

:: ; 1~ ] = Sl - 1)
IEJTUILI,JT”[LV 1”” _

]L?TTH

-N

n

LMLL[LM”

Figure 8.3 Procedure for forming the periodic convolution of two periodic
sequences.
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the sequences x;[m], X1[m], X2[—m]., 2[l — m] = X[—(m — 1)], and %[2 — m] =
I[—(m — 2)]. To evaluate %3[n] in Eq. (8.27) for n = 2, for example, we multiply
%i[m] by ¥2[2 — m] and then sum the product terms % [m] X2[2 —m] for0 < m < N—1,
obtaining ¥3{2]. Asnchanges, the sequence X;[n—#1] shifts appropriately, and Eq. (8.27)
is evaluated for each value of 0 < n < N — 1. Note that as the sequence X»[n — m] shifts
to the right or left, values that leave the interval between the dotted lines at one end
reappear at the other end because of the periodicity. Because of the periodicity of ¥3[n],
there is no need to continue to evaluate Eq. (8.27) outside the interval 0 <n < N—1.

The duality theorem (Section 8.2.3) suggests that if the roles of time and frequency
are interchanged, we will obtain a result almost identical to the previous resuit. That is,
the periodic sequence

%3[n] = 01 [n)%[n]. (8.33)
where ¥;[n] and X;{n] are periodic sequences, each with period N, has the discrete
Fourier series coefficients given by

N—1

Bl = 53 Rl Kl -], (8.34)

=0

corresponding to 1/N times the periodic convolution of X|[k] and X[k]. This result
can also be verified by substituting X;[k]. given by Eq. (8.34), into the Fourier series
relation of Eq. (8.12) to obtain X3(n].

8.2.6 Summary of Properties of the DFS Representation
of Periodic Sequences

The properties of the discrete Fourier series representation discussed in this section are
surmnmarized in Table 8.1,

TABLE 8.1 SUMMARY OF PROPERTIES OF THE DFS

Periodic Sequence (Period N) DFS Coefficients (Period N)
1. x[x] X[k] periodic with period N
2. x|n], 22[A)] X, [k]. X}[k] periodic with period N
3. ax[n] + biz[n) a X, [k] + b X3[k]
4. X[n] Nx[—k]
5 Xn-m WM X (k]
6. Wyi[n] X[k - ¢]

N-1
¥i[m]iz[n —m] (periodic convolution)  X;[k]Xa[k]

~
4
+

m=0
N-1
8. ¥[n]x:[n] N Z X1[¢] Xz[k — €] (periodic convolution)
£=0
9. x*[n] X*[—K]

(continued )
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Periodic Sequence {Period N)

DEFS Coefficients {Period N)

10. ¥*[—n] X*{k]
1. Re{z[n]} X [K] = L(X[k)+ X*[—k])
12, jTmix(nl) Xolk] = (X[k] = X*[—k])
13. x.(n] = %()‘([n] + X*[—n]) Re{ X[k])
4. x,[n] = %(,Y[n] — x*[-n]) jTm{ X[k}
Properties 15-17 apply only when x[n] is real.
X(k] = X*[—]
Re{X[k]} = Re{ X[k}
15. Symmetry properties for ¥[n] real. ’7m{X[k]] = - 7m{X[ K}
| XIAL = IX )]
IX[k] = —<aX[-k]
16. X.[n] = %(i[n] + ¥[—n]) Re{ X [k]}
17. xoln] = $(x[n] — %[-n]) FTm{ X [k]}

8.3 THE FOURIER TRANSFORM OF PERIODIC SIGNALS

As discussed in Section 2.7, uniform convergence of the Fourier transform of a sequence
requires that the sequence be absolutely summable, and mean-square convergence
requires that the sequence be square summable. Periodic sequences satisfy neither
condition, because they do not approach zero as n approaches +oc. However, as we
discussed briefly in Section 2.7, sequences that can be expressed as a sum of complex
exponentials can be considered to have a Fourier transform representation in the form
of Eq. (2.152), i.e., as a train of impulses. Similarly, it is often useful to incorporate
the discrete Fourier series representation of periodic signals within the framework of
the Fourier transform. This can be done by interpreting the Fourier transform of a
periodic signal to be an impulse train in the frequency domain with the impulse values
proportional to the DFS coefficients for the sequence. Specifically, if X[#] is periodic
with period N and the corresponding discrete Fourier series coefficients are X [k], then
the Fourier transform of ¥[n] is defined to be the impulse train

- = 27 2mk
X(e?) = XK (w— ).
@)= 3 Rk (o= 7FF)

Note that X(e/®) has the necessary periodicity with period 27 since X[k] is periodic with
period N and the impulses are spaced at integer multiplesof 2r/ N, where Nis aninteger.
To show that X(e/®) as defined in Eq. (8.35) is a Fourier transform representation of
the periodic sequence X[n], we substitute Eq. (8.35) into the inverse Fourier transform
equation (2.133); 1.e.,

1 2r—e ) 1 2w —¢
- X jw jwnd —_ ___X k
2 0—e¢ (e )e “ 2 0—¢ Z [ (

where ¢ satisfies the inequality 0 < ¢ < (27/N). Recall that in evaluating the inverse
Fourier transform, we can integrate over any interval of length 27, since the integrand

(8.35)

%’%") el "dw,  (8.36)

k=—o0c
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X(el®)elon is periodic with period 27. In Eq. (8.36) the integration limits are denoted
0—¢€ and 27 —e, which means that the integration is from just before w = 0 to just before
w = 2r. These limits are convenient because they include the impulse at @ = 0 and
exclude the impulse at w = 2. Interchanging the order of integration and summation
leads to

1 2m—€ ] ) 1 00 N 2x—¢€ 'k )
N foyeiond ., — 5 _ =" jor g
> X(e'™)el"dw Nk;OOX[k] fO_G (a) 5 )e w
3
v (8.37)
— -ﬁ X[k]e/(Z”/N)k".

k
Il

0

The final form of Eq. (8.37) results because only the impulses corresponding to k =
0,1,..., (N —1) are included in the interval between w = 0 — ¢ and w = 27 — €.

Comparing Eq. (8.37) and Eq. (8.12), we see that the final right-hand side of
Eq. (8.37) is exactly equal to the Fourier series representation for X[n], as specified by
Eq. (8.12). Consequently, the inverse Fourier transform of the impulse train in Eq. (8.35)
is the periodic signal ¥[n], as desired.

Although the Fourier transform of a periodic sequence does not converge in the
normal sense, the introduction of impulses permits us to include periodic sequences
formally within the framework of Fourier transform analysis. This approach was also
used in Chapter 2 to obtain a Fourier transform representation of other nonsummable
sequences, such as the two-sided constant sequence (Example 2.23) or the complex
exponential sequence (Example 2.24). Although the discrete Fourier series representa-
tion is adequate for most purposes, the Fourier transform representation of Eq. (8.35)
sometimes leads to simpler or more compact expressions and simplified analysis.

Example 8.5 The Fourier Transform of a Periodic
Impuise Train

Consider the periodic impulse train

o0

plnl =Y s[n—rN], (8.38)

r=—00

which is the same as the periodic sequence ¥[n] considered in Example 8.1. From the
results of that example, it follows that

P[Kj=1,  forallk. (8.39)
Therefore, the Fourier transform of p{n]is
[e.9)
- . 2n 2wk
j@ == e —— . B
P(ei®) kz Na(w N) (8.40)
=—00

The result of Example 8.5 is the basis for a useful interpretation of the relation
between a periodic signal and a finite-length signal. Consider a finite-length signal x[r]
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I ITR T

-N

0 N n

x|n] Figure 8.4 Periodic sequence X[7]
formed by repeating a finite-length
sequence, x[n], periodically.
Alternatively, x[n] = X[n] over one

0 N " period and is zero otherwise.

such that x[n] = 0 except in the interval 0 < n < N — 1, and consider the convolution
of x[r] with the periodic impulse train p[n] of Example 8.5:

x[n] = x[n] * p[n] = x[n] * Z S[n —rN]
o r==o (8.41)
= Z x[n—rN].

Equation (8.41) states that X[n] consists of a set of periodically repeated copies of the
finite-length sequence x[n]. Figure 8.4 illustrates how a periodic sequence ¥[n] can be
formed from a finite-length sequence x[r] through Eq. {8.41). The Fourier transform of
x[n] is X{e’®), and the Fourier transform of ¥[n] is

X(ef(“) = X(e"‘”)ls(ef“))

: = 27 2k
_ jo - - 8.42
X(e )A‘:E_Oo N b) (a) N ) (8.42)
= 2 , , 2nk
— ET (2RI N K _ 27K
= A.:E—OO N X(e )8 (w N ) .

Comparing Eq. (8.42) with Eq. (8.35), we conclude that

X[k] = X(e/PT/NEY = X(e/®)] (8.43)

w=21/N)k "
In other words, the periodic sequence X[k] of DFS coefficients in Eq. (8.11) has an
interpretation as equally spaced samples of the Fourier transform of the finite-length
sequence obtained by extracting one period of X[n]; i.e.,

__ 'i'[n]’ OS”EN—I
)= {0, otherwise. (8.44)

This is also consistent with Figure 8.4, where it is clear that x[#] can be obtained from
¥[n] using Eq. (8.44). We can verify Eq. (8.43) in yet another way. Since x[n] = ¥[n] for
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0 <n < N—1and x[n] = 0 otherwise,

N—1 N—-1

X(e'*y =3 " xfnle /e = 3" x[n]eien. (8.45)

n=0 n=>0

Comparing Eq. (8.45) and Eq. (8.11), we see again that
X[k = X (') wm2rmisn- (8.46)

This corresponds to sampling the Fourier transform at N equally spaced frequencies
between w = 0 and w = 27 with a frequency spacing of 27/ N.

Example 8.6 Relationship Between the Fourier Series
Coefficients and the Fourier Transform of One Period

We again consider the sequence X[n] of Example 8.3, which is shown in Figure 8.1.
One period of ¥[n] for the sequence in Figure 8.1 is

1, 0<n=<4,
x[n] = {(), otherwise. (8.47)

1 X (e/)l

L X (el

m—

(b)

Figure 8.5 Magnitude and phase of the Fourier transtorm of one period of the
sequence in Figure 8.1.
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The Fourier transform of one period of ¥[n] is given by

4

X(ejm) — Zefj(un — e*ij

n=0

si.r1(5w/2)_ (8.48)
sin(w/2)
Equation (8.46) can be shown to be satisfied for this example by substituting & =
2mk/10 into Eq. (8.48), giving

— o /(4Tk/10) sin(rk/2)

XK sin( k/10)

which is identical to the result in Eq. (8.18). The magnitude and phase of X (e/®) are
sketched in Figure 8.5. Note that the phase is discontinuous at the frequencies where
X(e/)y = 0. That the sequences in Figures 8.2(a) and (b) correspond to samples of
Figures 8.5(a) and (b). respectively, is demonstrated in Figure 8.6, where Figures 8.2
and 8.5 have been superimposed.

| X (e/) ) X [k]!
5

(a)

LX(el), L X[k]

T —

(b)

Figure 8.6 Overlay of Figures 8.2 and 8.5 illustrating the DFS coefficients of a
periodic sequence as samples of the Fourier transform of one period.

8.4 SAMPLING THE FOURIER TRANSFORM

In this section, we discuss with more generality the relationship between an aperiodic
sequence with Fourier transform X(e’/¢) and the periodic sequence for which the DFS
coefficients correspond to samples of X(e/®) equally spaced in frequency. We will find
this relationship to be particularly important when we discuss the discrete Fourier trans-
form and its properties later in the chapter.
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Im

Z-plane
Unit 2ar
circle N
¥
Re
Figure 8.7 Points on the unit circle at
which X(z) is sampled to obtain the

periodic sequence X[k] (N = 8).

Consider an aperiodic sequence x[#] with Fourier transform X(e’®), and assume
that a sequence X[k] is obtained by sampling X (e/*) at frequencies wy = 2k/N; i.e.,

X[K] = X(e/Yweizn/mn = X (/T NKY, (8.49)

Since the Fourier transform is periodic in w with period 2, the resulting sequence is
periodic in k with period N. Also, since the Fourier transform is equal to the z-transform
evaluated on the unit circle, it follows that X [k] can also be obtained by sampling X{(z)
at N equally spaced points on the unit circle. Thus,

X[k] = X(2)| e prommn = X(e/ PNy, (8.50)

These sampling points are depicted in Figure 8.7 for N = 8. The figure makes it clear
that the sequence of samples is periodic, since the N points are equally spaced starting
with zero angle. Therefore, the same sequence repeats as k varies outside the range
0<k<N-1

Note that the sequence of samples X[k], being periodic with period N, could be
the sequence of discrete Fourier series coefficients of a sequence ¥[n]. To obtain that
sequence, we can simply substitute X[k] obtained by sampling into Eq. (8.12):

N-1
#[n] = % S XKW (8.51)
k=0

Since we have made no assumption about x[n] other than that the Fourier transform
exists,
20

Xy = 3" x[mle /o™ (8.52)

M=—0C

Substituting Eq. (8.52) into Eq. (8.49) and then substituting the resulting expression for
X[k] into Eq. (8.51) gives

N-1 00
X[n]=— Z [ Z x[m]e"j(z”/N)"’"} Wy, (8.53)

k=0 Lm=—0c

which, after we interchange the order of summation, becomes

o0 o0

N-1
fal= Y x[m] [% 3 wg’“"—’")] = > x[m]p[n —ml. (8.54)
k=0

nm=—00 m=—o<
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(b)

Figure 8.8 (a) Finite-length sequence x{n}. (b) Periodic sequence X[n} corre-
sponding to sampling the Fourier transform of x{n] with N = 12.

The term in brackets in Eq. (8.54) can be seen from either Eq. (8.7) or Eq. (8.16) to be
the Fourier series representation of the periodic impulse train of Examples 8.1 and 8.2.
Specifically,

1 = —K{n—m -
p[n—m]:NZWN“( "= Y sln-m-rN] (8.55)
=0 r=-o0
and therefore,
X[n] = x[n] * Z S[n—rN]= Z x[n - rNJ, (8.56)

where * denotes aperiodic convolution. That is, ¥[n] is the periodic sequence that results
from the aperiodic convolution of x[n] with a periodic unit-impulse train. Thus, the
periodic sequence ¥{n], corresponding to X [k] obtained by sampling X(e/®), is formed
from x[n] by adding together an infinite number of shifted replicas of x[n]. The shifts
are all the positive and negative integer multiples of N, the period of the sequence
X|[k]. This is illustrated in Figure 8.8, where the sequence x[#n] is of length 9 and the
value of N in Eq. (8.56) is N = 12. Consequently, the delayed replications of x{n] do
not overlap, and one period of the periodic sequence %[n] is recognizable as x[n]. This
is consistent with the discussion in Section 8.3 and Example 8.6 wherein we showed
that the Fourier series coefficients for a periodic sequence are samples of the Fourier
transform of one period. In Figure 8.9 the same sequence x[n] is used, but the value
of Nis now N = 7. In this case the replicas of x[n] overlap and one period of X[n] is
no longer identical to x[n]. In both cases, however, Eq. (8.49) still holds; i.c., in both
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o

x[n]= . ;x x[n-r7]

AL T

_14 -7 0 ' 14 n
N=7

Figure 8.9 Periodic sequence X[n] corresponding to sampling the Fourier trans-
form of x[n] in Figure 8.8(a) with N = 7.

cases the DFS coefficients of ¥[n] are samples of the Fourier transform of x[n] spaced
in frequency at integer multiples of 2/ N. This discussion should be reminiscent of our
discussion of sampling in Chapter 4. The difference is that here we are sampling in the
frequency domain rather than in the time domain. However. the general outlines of the
mathematical representations are very similar.

For the example in Figure 8.8, the original sequence x[n] can be recovered from
%[n] by extracting one period. Equivalently, the Fourier transform X(e/*) can be re-
covered from the samples spaced in frequency by 2x/12. In contrast, in Figure 8.9,
x[n] cannot be recovered by extracting one period of ¥[xn], and, equivalently, X(e/®)
cannot be recovered from its samples if the sample spacing is only 2x/7. In effect, for
the case illustrated in Figure 8.8, the Fourier transform of x[n] has been sampled at a
sufficiently small spacing (in frequency) to be able to recover it from these samples,
whereas Figure 8.9 represents a case for which the Fourier transform has been under-
sampled. The relationship between x[n] and one period of ¥[#] in the undersampled
case can be thought of as a form of aliasing in the time domain, essentially identical
to the frequency-domain aliasing (discussed in Chapter 4) that results from undersam-
pling in the time domain. Obviously, time-domain aliasing can be avoided only if x[#]
has finite length, just as frequency-domain aliasing can be avoided only for signals that
have bandlimited Fourier transforms.

This discussion highlights several important concepts that will play a central role
in the remainder of the chapter. We have seen that samples of the Fourier transform of
an aperiodic sequence x[z] can be thought of as DFS coefficients of a periodic sequence
¥[n] obtained through summing periodic replicas of x[n]. If x[#] has finite length and we
take a sufficient number of equally spaced samples of its Fourier transform (specifically,
a number greater than or equal to the length of x[n]), then the Fourier transform is
recoverable from these samples, and, equivalently, x[#] is recoverable from the corre-
sponding periodic sequence X[n] through the relation

_[¥@n]., 0=n=<N-1,
x{n] = {O, otherwise. (8.57)

A direct relationship between X(e/®) and its samples X[k], i.e.. an interpolation
formula for X(e/®), can be derived (see Problem 8.54). However, the essence of our
previous discussion is that to represent or to recover x[n] it is not necessary to know
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X(e’®) at all frequencies if x[n] has finite length. Given a finite-length sequence x[#],
we can form a periodic sequence using Eq. (8.56), which in turn can be represented by
a discrete Fourier series. Alternatively, given the sequence of Fourier coefficients X[4],
we can find ¥[n] and then use Eq. (8.57) to obtain x[n]. When the Fourier series is used in
this way to represent finite-length sequences, it is called the discrete Fourier transform
(DFT). In developing, discussing, and applying the DFT, it is always important to
remember that the representation through samples of the Fourier transform is in effect
a representation of the finite-duration sequence by a periodic sequence, one period of
which is the finite-duration sequence that we wish to represent.

8.5 FOURIER REPRESENTATION OF FINITE-DURATION
SEQUENCES: THE DISCRETE FOURIER TRANSFORM

In this section, we formalize the point of view suggested at the end of the previous
section. We begin by considering a finite-length sequence x[n] of length N samples such
that x[n] = 0 outside the range 0 < n < N — 1. In many instances, we will want to
assume that a sequence has length N even if its length is M < N. In such cases, we
simply recognize that the last (N — M) samples are zero. To each finite-length sequence
of length N, we can always associate a periodic sequence

o0

¥[n] = Z x[n—rN]. (8.58a)

r=—00

The finite-length sequence x[n] can be recovered from x[n] through Eq. (8.57). i.e.,

_ [ ¥, 0=sn=N-1,
x[n] = {O. otherwise. (8.586)

Recall from Section 8.4 that the DFS coefficients of %[rn] are samples (spaced in
frequency by 27/ N) of the Fourier transform of x[#n]. Since x[n] is assumed to have
finite length NV, there is no overlap between the terms x[n — r N | for different values of
r. Thus, Eq. (8.58a) can alternatively be written as

%[n] = x[(n modulo N)]. (8.59)

For convenience, we will use the notation ({n))y to denote (n modulo N); with this
notation, Eq. (8.59) is expressed as

x[n] = x[((n))N])- (8.60)

Note that Eq. (8.60) is equivalent to Eq. (8.58a) only when x[n] has length less than or
equal to N. The finite-duration sequence x[#] is obtained from ¥[n] by extracting one
period, as in Eq. (8.58b).

One informal and useful way of visualizing Eq. (8.59) is to think of wrapping a plot
of the finite-duration sequence x[n] around a cylinder with a circumference equal to the



560 The Discrete Fourier Transform Chap. 8

length of the sequence. As we repeatedly traverse the circumference of the cylinder, we
see the finite-length sequence periodically repeated. With this interpretation, represen-
tation of the finite-length sequence by a periodic sequence corresponds to wrapping the
sequence around the cylinder; recovering the finite-length sequence from the periodic
sequence using Eq. (8.58b) can be visualized as unwrapping the cylinder and laying it flat
so that the sequence is displayed on a linear time axis rather than a circular (modulo N)
time axis.

As defined in Section 8.1, the sequence of discrete Fourier series coefficients X [k]
of the periodic sequence ¥[n] is itself a periodic sequence with period N. To maintain a
duality between the time and frequency domains, we will choose the Fourier coefficients
that we associate with a finite-duration sequence to be a finite-duration sequence cor-
responding to one period of X [k]. This finite-duration sequence, X [k], will be referred
to as the discrete Fourier transform (DFT). Thus, the DFT, X [k], is related to the DFS
coefficients, X[k], by

{Xm,osng—L
X[K] = (8.61)
0, otherwise,
and
X[k] = X[(k modulo N)] = X[((k))n]. (8.62)

From Section 8.1, X[k] and %[n] are related by

N-—1
X[kl =" z[n|win, (8.63)
n=0
1 N-1 _
%[n] = 5 XKW (8.64)
k=0

Since the summations in Eqs. (8.63) and (8.64) involve only the interval between zero
and (N — 1), it follows from Egs. (8.58b)—(8.64) that

N—1
x[n]Wr", 0<k<N-1,
X[k] = ot (8.65)
0, otherwise,
1 N—
— N X[FW*", 0<n< N-1,
x[m=< N ,; (8.66)
0, otherwise.
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Generally, the DFT analysis and synthesis equations are written as follows:

N—1
Analysis equation: X[k] = Z x[n]WR", (8.67)
n=0
N—1
: : 1 —kn
Synthesis equation: x[n] = N Z X[kJWy " (8.68)
k=0

That is, the fact that X[k] = O for k outside the interval 0 < kK < N —1 and that x[n] = 0
for n outside the interval 0 < n < N — 1 is implied, but not always stated explicitly. The
relationship between x[r] and X[k] implied by Egs. (8.67) and (8.68) will sometimes be
denoted as

x[n] &L x[4). (8.69)

In recasting Eqgs. (8.11) and (8.12) in the form of Egs. (8.67) and (8.68) for finite-
duration sequences, we have not eliminated the inherent periodicity. As with the DFS,
the DFT X[k] is equal to samples of the periodic Fourier transform X(e’*), and if
Eq. (8.68) is evaluated for values of n outside the interval 0 < n < N — 1, the result
will not be zero, but rather a periodic extension of x[n]. The inherent periodicity is
always present. Sometimes it causes us difficulty and sometimes we can exploit it, but to
totally ignore it is to invite trouble. In defining the DFT representation, we are simply
recognizing that we are interested in values of x[n] only in the interval 0 <n < N —1
because x[n] is really zero outside that interval, and we are interested in values of X k]
only in the interval 0 < kK < N—1 because these are the only values needed in Eq. (8.68).

Example 8.7 The DFT of a Rectangular Pulse

To illustrate the DFT of a finite-duration sequence, consider x[n] shown in Fig-
ure 8.10(a). In determining the DFT, we can consider x[n] as a finite-duration se-
quence with any length greater than or equal to N = 5. Considered as a sequence of
length N = 5, the periodic sequence X[n] whose DFS corresponds to the DFT of x[#n]
is shown in Figure 8.10(b). Since the sequence in Figure 8.10(b) is constant over the
interval 0 < n < 4, it follows that

4 1 — ¢—/27k

Y[kl = —~jQrk/5n _
X[k = Z € T 1 — e i2nk/5)
n=0

{5‘ k=045, +10.....

(8.70)

0. otherwise;

i.e., the only nonzero DFS coefficients X’[k] are at k = 0 and integer multiples of
k = 5 (all of which represent the same complex exponential frequency). The DFS
coefficients are shown in Figure 8.10(c). Also shown is the magnitude of the Fourier
transform, | X(e/?)|. Clearly, X[k] is a sequence of samples of X(e/®) at frequencies
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0 4 n
{a)
X[n]
0 5 10 15 20 n
(b)

(d)

Xik]

Figure 8.10 Illustration of the DFT. (a) Finite-length sequence x[n]. (b) Periodic
sequence X[n] formed from x[n] with period N = 5. (c) Fourier series coefficients

X [K] for X[n). To emphasize that the Fourier series coefficients are samples of the

Fourier transform, i X (e/®)| is also shown. (d) DFT of x[n].

wix = 27k/5. According to Eq. (8.61), the five-point DFT of x[n] corresponds to the
finite-length sequence obtained by extracting one period of X[k]. Consequently, the

five-point DFT of x[#] is shown in Figure 8.10(d).

If, instead, we consider x{n] to be of length N = 10, then the underlying periodic
sequence is that shown in Figure 8.11(b), which is the periodic sequence considered
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x[n]

0 4 n
(a)
%[n]
I
10 0 4 10 "
(b)

(c)

L X[k
04 o L]

-02 7

04
(d)

Figure 8.11 lllustration of the DFT. (a) Finite-length sequence x[n]. (b) Periodic
sequence X[n] formed from x[n] with period N = 10. (c) DFT magnitude. (d) DFT
phase. (x’s indicate indeterminate values.)

in Example 8.3. Therefore, 5([k] is as shown in Figures 8.2 and 8.6, and the 10-point
DFT X|k] shown in Figures 8.11(c) and 8.11(d) is one period of X|k].

The distinction between the finite-duration sequence x[7] and the periodic se-
quence ¥[n] related through Egs. (8.57) and (8.60) may seem minor, since, by using
these equations, it is straightforward to construct one from the other. However, the
distinction becomes important in considering properties of the DFT and in considering
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the effect on x[n] of modifications to X [k]. This will become evident in the next section,
where we discuss the properties of the DFT representation.

8.6 PROPERTIES OF THE DISCRETE FOURIER TRANSFORM

In this section, we consider a number of properties of the DFT for finite-duration
sequences. Our discussion parallels the discussion of Section 8.2 for periodic sequences.
However, particular attention is paid to the interaction of the finite-length assumption
and the implicit periodicity of the DFT representation of finite-length sequences.

8.6.1 Linearity

If two finite-duration sequences x;|n] and x»[#] are linearly combined, i.e., if

x3[n] = ax,[n] + bx:[n], (8.71)
then the DFT of x3[n] is

Clearly, if x| [#] has length N and x;[#] has length N>, then the maximum length of x3[n]
will be N3 = max[N|, Nz]. Thus, in order for Eq. (8.72) to be meaningful, both DFTs
must be computed with the same length N > Nj. If, for example, Ny < N, then X [4]
is the DFT of the sequence x|[n] augmented by (N, — N,) zeros. That is, the N,-point
DFT of x[n] is

N -1
XK =Y xnWi, 0k N -1, (8.73)
n=0
and the N;-point DFT of x;[n] is
No—1
Xolk] =" xa[n]WE, O0<k<N;—1. (8.74)
n=0
In summary, if
0[] €5 x\[4] (8.75a)
and
xn] 224 X[k, (8.75b)
then
axi[n] + bxa{n] 223 a X [k] + bX5[K], (8.76)

where the lengths of the sequences and their discrete Fourier transforms are all equal
to the maximum of the lengths of x;[#n] and x;[n]. Of course, DFTs of greater length
can be computed by augmenting both sequences with zero-valued samples.

8.6.2 Circular Shift of a Sequence

According to Section 2.9.2 and property 2 in Table 2.2, if X(e/“) is the Fourier transform
of x[n], then e 7*" X(e’/) is the Fourier transform of the time-shifted sequence x{rn—m].
In other words, a shift in the time domain by m points (with positive m corresponding
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to a time delay and negative m to a time advance) corresponds in the frequency do-
main to multiplication of the Fourier transform by the linear phase factor e~/ In Sec-
tion 8.2.2, we discussed the corresponding property for the DFS coefficients of a pe-
riodic sequence; specifically, if a periodic sequence X[n] has Fourier series coefficients
X[k], then the shifted sequence %[r — m] has Fourier series coefficients e /@7K/N)m X [k].
Now we will consider the operation in the time domain that corresponds to multiply-
ing the DFT coefficients of a finite-length sequence x[n] by the linear phase factor
e~ /Grk/NIm_Qnecifically, let x)[n] denote the finite-length sequence for which the DFT
is e/ CTkNIm XTK]; ie., if

x[n) &2 x[k), (8.77)

then we are interested in x;[n] such that
xln] ZL x| [k] = e 1@NIm x[]. (8.78)

Since the N-point DFT represents a finite-duration sequence of length N, both x[n] and
x1[n] must be zero outside the interval 0 < n < N — 1, and consequently, x;[n] cannot
result from a simple time shift of x[n]. The correct result follows directly from the result
of Section 8.2.2 and the interpretation of the DFT as the Fourier series coefficients of
the periodic sequence x1[((n))y]. In particular, from Egs. (8.59) and (8.62) it follows that

DFS

%[n] = x[((m)n] < X[K] = X[((k))n], (8.79)
and similarly, we can define a periodic sequence X, [n] such that
filn] = xil((M)v] <= K[k = Xi[(O)], (8.80)
where, by assumption,
X\[k] = 7 /@K NIm x (], (8.81)

Therefore, the discrete Fourier series coefficients of %;[n] are

X1[k] = e~ TBmGIN/NIm XT((K))N]. (8.82)
Note that

eI RrR)IN/NYm _ —jQ2rk/N)m (8.83)

That is, since e~/@7%/M)m j5 periodic with period N in both k and m, we can drop the
notation ((k))y. Hence, Eq. (8.82) becomes

Xi[k] = e~ 1@mKNIm X[ k], (8.84)
so that it follows from Section 8.2.2 that
%1[n] = x[n — m] = x[((n — m)N]. (8.85)
Thus, the finite-length sequence x;[n] whose DFT is given by Eq. (8.81) is
_Jal)=xi((n-m)x]), 0=<n=N-1,
xi[n] = {O, otherwise. (8.86)

Equation (8.86) tells us how to construct x;[n].



566 The Discrete Fourier Transform Chap. 8

Example 8.8 Circular Shift of a Sequence

The circular shift procedure is illustrated in Figure 8.12 for 1 = —2; i.e., we want to
determine xi[n] = x[((n + 2))n ] for N = 6, which we have shown will have DFT
Xi[k] = Wb_sz[k]. Specifically, from x[#z], we construct the periodic sequence X[n] =
x[((n))s]. as indicated in Figure 8.12(b). According to Eq. (8.85), we then shift x[n] by
2 to the left, obtaining %,[n] = ¥[n + 2] as in Figure 8.12(c). Finally, using Eq. (8.86),
we extract one period of ¥|[n] to obtain x|[#]. as indicated in Figure 8.12(d).

| |
| |
t |
| |
| |
I |

x[n]

x[r]

H

14

x[n] = Xl 0=n=N-1
0. otherwise

i
|
|
!
|
|
|
|
|
|
|
1
|
|
|
|
|
: X [n]=x[n+2]
|
|
|
Il
}
|
|
|
|
|
|
|
|
|
|
|
|

(d)

Figure 8.12 Circular shift of a finite-length sequence, i.e., the effect in the time
domain of multiplying the DFT of the sequence by a linear phase factor.

A comparison of Figures 8.12(a) and (d) indicates clearly that x;[n] does not
correspond to a linear shift of x[n], and in fact, both sequences are confined to the
interval between 0 and (N — 1). By reference to Figure 8.12, we see that xj[n] can be
formed by shifting x[r] so that as a sequence value leaves the interval 0 to (N — 1) at
one end, it enters at the other end. Another interesting point is that, for the example
shown in Figure 8.12(a), if we form x;[n] = x[((n — 4))«] by shifting the sequence by
4 to the right modulo 6, we obtain the same sequence as x;[#]. In terms of the DFT,
this results because W = W(:Zk or, more generally, Wik = W,(,(Nf'")k, which implies
that an N-point circular shift in one direction by m is the same as a circular shift in the
opposite direction by N — m.
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In Section 8.4, we suggested the interpretation of forming the periodic sequence
X|n] from the finite-length sequence x[n] by displaying x[#] around the circumference
of a cylinder with a circumference of exactly N points. As we repeatedly traverse the
circumference of the cylinder, the sequence that we see is the periodic sequence ¥[n].
A linear shift of this sequence corresponds, then, to a rotation of the cylinder. In the
context of finite-length sequences and the DFT, such a shift is called a circular shift or
a rotation of the sequence in the interval 0 <n < N —1.

In summary, the circular shift property of the DFT is

x[((n—m)n]. 0<n< N—1 254 o i@rkiNim x g, (8.87)

8.6.3 Duality

Since the DFT is so closely associated with the DFS, we would expect the DFT to exhibit
a duality property similar to that of the DFS discussed in Section 8.2.3. In fact, from an
examination of Eqgs. (8.67) and (8.68), we see that the analysis and synthesis equations
differ only in the factor 1/N and the sign of the exponent of the powers of Wy.

The DFT duality property can be derived by exploiting the relationship between
the DFT and the DFS as in our derivation of the circular shift property. Toward this
end, consider x[n] and its DFT X|[k], and construct the periodic sequences

[n] = x[((m)n]. (8.88a)
X[K] = X{((K)n]. (8.88b)
so that
¥[n] 3 X[k (8.89)
From the duality property given in Eqs. (8.25).
X[n] 55 Nx[-k]. (8.90)

If we define the periodic sequence ¥[n] = X|[n], one period of which is the finite-
length sequence x;[n] = X|[n], then the DFS coefficients of ¥[n] are X:[k] = N¥[—k].
Therefore, the DFT of x[n] is

Nx[—k]. 0<k<N-1,

Xi[k] = {O, otherwise, (8.91)
or, equivalently,
_ [ Nx[((=R)N]. 0=k=N-1,
X[kl = {0, otherwise. (8.92)
Consequently, the duality property for the DFT can be expressed as follows: If
x[n] €25 x[A]. (8.93a)

then

X[n] &4 Nx[((=k))n], 0<k<N-1. (8.93b)
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The sequence Nx[((—k))n]is Nx|k] index reversed, modulo N. As in the case of
shifting modulo N, the process of index reversing modulo N is usually best visualized
in terms of the underlying periodic sequences.

Example 8.9 The Duality Relationship for the DFT

To illustrate the duality relationship in Eqgs. (8.93), let us consider the sequence x[n] of
Example 8.7. Figure 8.13(a) shows the finite-length sequence x[n], and Figures 8.13(b)
and 8.13(c) are the real and imaginary parts, respectively, of the corresponding
10-point DFT X[k]. By simply relabeling the horizontal axis, we obtain the com-
plex sequence x;[n] = X[n], as shown in Figures 8.13(d) and 8.13(e). According to the
duality relation in Eqs. (8.93), the 10-point DFT of the (complex-valued) sequence
X'[n] is the sequence shown in Figure 8.13(f).

8.6.4 Symmetry Properties

Since the DFT of x|n] is identical to the DFS coefficients of the periodic sequence
x[n] = x[{(n))n], symmetry properties associated with the DFT can be inferred from the
symmetry properties of the DFS summarized in Table 8.1 in Section 8.2.6. Specifically,
using Eqs. (8.88) together with properties 9 and 10 in Table 8.1, we have

) 5 X(-k)nl. 0=n<N-1, (8.94)
and
(=Nl 3 XK, 0snsN-1. (8.95)

Properties 11-14 in Table 8.1 refer to the decomposition of a periodic sequence into the
sum of a conjugate-symmetric and a conjugate-antisymmetric sequence. This suggests
the decomposition of the finite-duration sequence x[n] into the two finite-duration
sequences of duration N corresponding to one period of the conjugate-symmetric and
one period of the conjugate-antisymmetric components of ¥[n]. We will denote these
components of x[r] as x.p[n] and x,,[#]. Thus, with

X[n] = x[((m)n] (8.96)
and the conjugate-symmetric part being
%[n] = 3{Z[n] + #*[-n]), (8.97)
and the conjugate-antisymmetric part being
%o[n] = Hxln] — %[ -n]), (8.98)
we define xcp[n] and xqp[n] as
Xepln] = Ze[n]. 0<n<N-1, (8.99)
Xop(n] = X,[n), 0O<n<N-1, (8.100)

or, equivalently,
Xep[n] = F{x[((W)N] + x*[((—=m)) N1}, 0<n=<N-1, (8.101a)
Xopln] = Sx[((W)N] = X" [((—m))N]},  O<n<N-1, (8.101b)
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Figure 8.13 llustration of duality.

(a) Real finite-iength sequence x[n].
(b) and (c) Real and imaginary

parts of corresponding DFT X [k].

(d} and (e) The real and imaginary parts
of the dual sequence x;[n] = X[n].

(f) The DFT of xy [n].
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with both xep[n] and x,[n] being finite-length sequences, i.e., both zero outside the
interval 0 <n < N—1.Since ((—n))y = (N —n)and ((n))y =nfor0<n< N—-1,we
can also express Eqgs. (8.101) as

Xep[n] = 3{x[n] + x*[N — n]}, lsnsN-1, (8.102a)
Xep[0] = Re{x[0]}, (8.102b)
xop[n] = 3{x[n] — x*[N — n]}, l<n<N-1, (8.102c)
Xopl0] = jTmix[0]). (8.1024)

This form of the equations is convenient, since it avoids the modulo N computation of
indices.

Clearly, x.p[n] and xqp[n] are not equivalent to x.[n] and x,[n] as defined by
Eq. (2.154). However, it can be shown (see Problem 8.56) that

xepln] = {x.[n] + x.[n — N}, 0<n<N-1, (8.103)
and
Xoplt] = {xo[n] + xo[n — N1, 0<n<N-1. (8.104)

In other words, xcp[n] and x,p[#] can be generated by aliasing x.[#] and x,[n] into the
interval 0 < n < N—1. The sequences xep[n] and x,p[#] will be referred to as the periodic
conjugate-symmetric and periodic conjugate-antisymmetric components, respectively, of
x[n]. When xp[n] and xop[n] are real, they will be referred to as the periodic even and
periodic odd components, respectively. Note that the sequences x.p[n] and xop[n] are
not periodic sequences; they are, however, finite-length sequences that are equal to one
period of the periodic sequences .[n] and X,[n], respectively.

Equations (8.101) and (8.102) define xp[n] and xqp[n] in terms of x[n]. The in-
verse relation, expressing x[n] in terms of xep[n] and x,p[#], can be obtained by using
Egs. (8.97) and (8.98) to express x[n] as

x[n] = Z.[n] + X,[n]. (8.105)
Thus,
x[n] = x[n] = x[n] + Xo[n], O<n=sN-1 (8.106)

Combining Egs. (8.106) with Egs. (8.99) and (8.100), we obtain
x[n] = xep[n] + x0p[n]. (8.107)

Alternatively, Egs. (8.102), when added, also lead to Eq. (8.107). The symmetry prop-
erties of the DFT associated with properties 11-14 in Table 8.1 now follow in a straight-
forward way:

DFT

Re(x[n]} < Xeplk], (8.108)
jTmix[nl) €75 X[k, (8.109)
xepln] €25 Re(X[K]), (8.110)

xopln] €% j Tm{ X[]). (8.111)
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8.6.5 Circular Convolution

In Section 8.2.5, we showed that multiplication of the DFS coefficients of two periodic
sequences corresponds to a periodic convolution of the sequences. Here we consider
two finite-duration sequences x;[n] and xz[n], both of length N, with DFTs X [k] and
X>[k], respectively, and we wish to determine the sequence x3[n] for which the DFT
is X3[k] = Xi[k] X:[k]. To determine x3[#], we can apply the results of Section 8.2.5.
Specifically, x3[n] corresponds to one period of x3[n], which is given by Eq. (8.27). Thus,

N-1
xln] =) xlmlkr-ml,  O0<n<N-1, (8.112)
m=0
or, equivalently,
N-1
xlal = al(m)slxl((n-m)y),  O0<nsN-L (8.113)

m=()

Since ((m))y = mfor0 <m < N— 1, Eq. (8.113) can be written

N-1
xin) =Y x[mu[((n-m)y],  0<n=<N-1 (8.114)

m=0

Equations (8.112) and (8.114) differ from a linear convolution of x;[r] and x;[n]
as defined by Eq. (2.52) in some important respects. In linear convolution, the computa-
tion of the sequence value x3[rn] involves multiplying one sequence by a time-reversed
and linearly shifted version of the other and then summing the values of the product
xi[m]x;[n — m] over all m. To obtain successive values of the sequence formed by the
convolution operation, the two sequences are successively shifted relative to each other.
In contrast, for the convolution defined by Eq. (8.114), the second sequence is circu-
larly time reversed and circularly shifted with respect to the first. For this reason, the
operation of combining two finite-length sequences according to Eq. (8.114) is called
circular convolution. More specifically, we refer to Eq. (8.114) as an N-point circular
convolution, explicity identifying the fact that both sequences have length N (or less)
and that the sequences are shifted modulo N. Sometimes the operation of forming a
sequence x3[n] for 0 < n < N — 1 using Eq. (8.114) will be denoted

x3[n] = x1[n] O x2[n]. (8.115)

Since the DFT of x3[n] is X3[k] = X:[k] X2[k] and since X;[k] Xz[k] = Xa[k] X:[k], it
follows with no further analysis that

x5[n] = o[ @ x [, (8.116)

or, more specifically,
N-1
x3[n] =) " x[mla[((n — m))n]. (8.117)
m=0

That is, circular convolution, like linear convolution, is a commutative operation.

Since circular convolution is really just periodic convolution, Example 8.4 and
Figure 8.3 are also illustrative of circular convolution. However, if we utilize the notion
of circular shifting, it is not necessary to construct the underlying periodic sequences as
in Figure 8.3. This is illustrated in the following examples.
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Example 8.10 Circular Convolution with a Delayed Impuise
Sequence

An example of circular convolution is provided by the result of Section 8.6.2. Let x»[n]
be a finite-duration sequence of length N and

xi[n] = 8|n — ny]. (8.118)
where 0 < ng < N. Clearly, x;[n] can be considered as the finite-duration sequence
0, 0<n<nyg,

xl[n] = 1, n= H(. (8.119)

0, n()<n5N—1.

as depicted in Figure 8.14 for ny = 1.

xp[m]
0 N m
x;[m]
0 N m

5[0 -m)hy].0=m=N-1

0 N m

H[((1-m))yl.0=m=N-1

0 N m

x30n] = x,[n] N) x,[n]

0 N n

Figure 8.14 Circular convolution of a finite-length sequence x,[n] with a single
delayed impulse, x1[n] = 8[n — 1].
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The DFT of xi[n] is
X [k] = wimo, (8.120)
If we form the product
X3[k] = WA X, 4], (8.121)

we see from Section 8.6.2 that the finite-duration sequence corresponding to X3[k] is
the sequence x;[n] rotated to the right by ny samples in the interval 0 < n < N — 1.
That is, the circular convolution of a sequence x;[n] with a single delayed unit impulse
results in a rotation of x;[n] in the interval 0 < » < N — 1. This example is illustrated
in Figure 8.14 for N = 5 and ng == 1. Here we show the sequences x;[m] and x; [m] and
then x3[({0 — m))n] and x2[((1 — m))n]. It is clear from these two cases that the result
of circular convolution of x;[n] with a single shifted unit impulse will be to circularly
shift x[#]. The last sequence shown is x3[n], the result of the circular convolution of
x1[n] and x;[n]. b e

Example 8.11 Circular Convolution of Two
Rectangular Pulses

As another example of circular convolution, let

1, 0<n=<L-1,

xiln] = xz[n] = {0’ otherwise (8.122)

where, in Figure 8.15, L. = 6. If we let N denote the DFT length. then, for N = L, the
N-point DFTs are

N—1
N, k=0
_ _ kn __ ’ ,
Xilkl = Xo[k] = Z_; Wy' = {0, otherwise. (8.123)
If we explicitly multiply X [k] and X»[k], we obtain
N k=0,
X[kl = X[k Xz (K] = {O. otherwise, (8.124)
from which it follows that
x3|n] = N, 0<n<N-1 (8.125)

This result is depicted in Figure 8.15. Clearly, as the sequence x;[({n — m))~] is rotated
with respect to xj[m], the sum of products x;[m]xz[({(n — m))y] will always be equal
to N,

It is, of course, possible to consider xj[n] and x2[n] as 2L-point sequences
by augmenting them with L zeros. If we then perform a 2L-point circular convo-
lution of the augmented sequences, we obtain the sequence in Figure 8.16, which
can be seen to be identical to the linear convolution of the finite-duration sequences
x1[n] and x;[n]. This important observation will be discussed in much more detail in
Section 8.7.
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Note that for N = 2L, as in Figure 8.16,

1= WLk
Xi[k] = Xa[k] = ﬁ
N

so the DFT of the triangular-shaped sequence x3[n] in Figure 8.16(e) is
1 - Whk\?*
Xalk] = (—J—) |
with N =2L.

0 N n
(a)
I x;[n]
0 N n
(b)
x3[n] = x[n] ® X;[n]
N
0 N n

(©

Chap. 8

Figure 8.15 N-pointcircular convolution of two constant sequences of length .

llll] II x[n]

0 L N
(a)
1 [ I | l ’ ] x,[n]
0 L N n
(b}

Figure 8.16 2L-point circular convolution of two constant sequences of

length L.
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YH[((-n))yl0=n=N-1

0 L N n
(d)

I x3[n| = x;[n] ®x2["]

0 L N n
(e}

Figure 8.16 (Continued)

The circular convolution property is represented as

x[n] ® xfn] 25 X[k X:[4]. (8.126)

In view of the duality of the DFT relations, it is not surprising that the DFT of a product
of two N-point sequences is the circular convolution of their respective discrete Fourier
transforms. Specifically, if x3[n] = x;[n]xz|n], then

N-1
MK = 5 3 Xl X[k~ )] (8127)
¢=0
or
x[n]xaln] 22% %Xl 6] Q) X-[K]. (8.128)

8.6.6 Summary of Properties of the Discrete
Fourier Transform

The properties of the discrete Fourier transform that we discussed in Section 8.6 are
summarized in Table 8.2. Note that for all of the properties, the expressions given specify
x[n] for0 < n < N—1and X[k] for 0 < k < N — 1. Both x[n] and X [4] are equal to
zero outside those ranges.
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TABLE 8.2

The Discrete Fourier Transform

Finite-Length Sequence (Length N)

N-point DFT (Length N)

8.

9.
10.
11.
12.
13.
14.
Properties 15— 17 apply only when x[n] is real.

15.

16.
17.

A O i e

x[n]

xi[n]. xa[n]
axy[n] + bxa|n]
X[n]

x[((n —m))n]
W3 x[n]

N-1

> xitmxal((n - myw)

m=0
x1[n]xz[n]

x*[n]
X*[((=n))N]
Ref{x[n])

{x[n] + x*[((=m))N])
(=N}

Xep[n} =

jTmix[n]}
l
xop[n] = l

{x[n] —

Symmetry properties

Lxln] + xl((~n))n])
Lixn] - x[((=n))W)

Xep[n] =

xop[n] =

X[]

X1[k], X2[k]

a X1[k] + bXa[k]
Nx[((=Kk))~]
Whm X [k]
X[((k = &))n]

X [K] X2[4]

N-1

53 XKOXA(K - O)w)
X (k)]

X*[4]
Xeplk] = LUX[((R)N] + X*[((=kDN])
Xoplkl = H{X(()N] — X*[((—k)N]}
Re[X[k]]
jTmX[k]}
X[k] = X*[((—K))w]
Re(X[k]} = Re{ X[((—K))N])
m{ X [k]} = —Tm{X[((-=k))n])
|X[k]| = | XT((=k))n]]
<UX[K]) = =< X[((—k)N]}
Re( X [k])
jTm{X[k]}

8.7 LINEAR CONVOLUTION USING THE DISCRETE
FOURIER TRANSFORM

Chap. 8

We will show in Chapter 9 that efficient algorithms are available for computing the
discrete Fourier transform of a finite-duration sequence. These are known collectively
as fast Fourier transform (FFT) algorithms. Because these algorithms are available, it is
computationally efficient to implement a convolution of two sequences by the following

procedure:

(a) Compute the N-point discrete Fourier transforms X;[k] and X;[k] of the two

sequences xj[n] and x;[n], respectively.
(b) Compute the product X3[k] =
(c) Compute the sequence x3[n] = x;[1] N) x;[n

Xl[k]Xz[k] for0<k<N-1.
] as the inverse DFT of X3[k].
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In most applications, we are interested in implementing a linear convolution of two
sequences; i.e., we wish to implement a linear time-invariant system. This is certainly
true, for example, in filtering a sequence such as a speech waveform or a radar signal or
in computing the autocorrelation function of such signals. As we saw in Section 8.6.5, the
multiplication of discrete Fourier transforms corresponds to a circular convolution of
the sequences. To obtain a linear convolution, we must ensure that circular convolution
has the effect of linear convolution. The discussion at the end of Example 8.11 hints at
how this might be done. We now present a more detailed analysis.

8.7.1 Linear Convolution
of Two Finite-Length Sequences

Consider a sequence x| [n] whose length is L points and a sequence xz[r] whose length
is P points, and suppose that we wish to combine these two sequences by linear convo-
lution to obtain a third sequence

X0

x3[n] = Z x) [m]xz[n — mj. (8.129)

MN=—oc

Figure 8.17(a) shows a typical sequence x[m] and Figure 8.17(b) shows a typical se-
quence xa[n — m] for several values of n. Clearly, the product x;[m]xa[n — m] is zero
for all m whenevern < Oandn > L+ P —2iie,x3a[n] #0for0 <n < L+ P—-2.
Therefore, (L + P — 1) is the maximum length of the sequence x;|#] resulting from the
linear convolution of a sequence of length L with a sequence of length P.

8.7.2 Circular Convolution as Linear Convolution
with Aliasing

As Examples 8.10 and 8.11 show, whether a circular convolution corresponding to the
product of two N-point DFTs is the same as the linear convolution of the corresponding
finite-length sequences depends on the length of the DFT in relation to the length
of the finite-length sequences. An extremely useful interpretation of the relationship
between circular convolution and linear convolution is in terms of time aliasing. Since
this interpretation is so important and useful in understanding circular convolution, we
will develop it in several ways.

In Section 8.4 we observed that if the Fourier transform X(e/) of a sequence x(n]
is sampled at frequencies wy = 27k/N, then the resulting sequence corresponds to the
DFS coefficients of the periodic sequence

x

X|n] = Z x[n—rN]. (8.130)

F==

From our discussion of the DFT, it follows that the finite-length sequence

[ X(e/FTHN)Y 0<k< N1,
X[k = {O, otherwise, (8131)
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xy[n]

(a)

X5 —m]
0 4 n L m
n-P+1
X[l + P-1-m]
0 L 4 m
L+P-1
(b)

Figure 8.17 Example of linear convolution of two finite-length sequences
showing that the result is such that x3[n] = 0forn < —1andforn> L+ P —1.
(a) Finite-length sequence xq[n]. (b) xo[1 — m)] for several values of 7.

is the DFT of one period of X[#n], as given by Eq. (8.130); i.e.,

¥[n], 0<n<N-1,

xpln] = {0, otherwise. (8.132)

Obviously, if x[n] has length less than or equal to N, no time aliasing occurs and x,[n] =
x[n]. However, if the length of x[n] is greater than N, x,[n] may not be equal to x[r] for
some or all values of n. We will henceforth use the subscript p to denote that a sequence
is one period of a periodic sequence resulting from an inverse DFT of a sampled Fourier
transform. The subscript can be dropped if it is clear that time aliasing is avoided.
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The sequence x3[n] in Eq. (8.129) has Fourier transform
X3(e’?) = X1(e/) X2(e’®). (8.133)
If we define a DFT
X3[k] = X3(e/ P4V, 0<k<N-1, (8.134)
then it is clear from Eqgs. (8.133) and (8.134) that, also
X;[k] = X (e/ N X, (e BRIV, 0<k<N-—1, (8.135)
and therefore,
Xs[k] = X1[k] X>[4]). (8.136)

That is, the sequence resulting as the inverse DFT of X5[k] is

e ¢]

x5pln] = ,;ocx3[" —rNL 0sn=N-l, (8.137)
0, otherwise,
and from Eq. (8.136), it follows that
x3p(n) = x1{n] M) x2[n]). (8.138)

Thus, the circular convolution of two finite-length sequences is equivalent to linear
convolution of the two sequences, followed by time aliasing according to Eq. (8.137).

Note that if N is greater than or equal to either L or P, Xi[k] and X;[k] rep-
resent x;[n] and x;[n] exactly, but x3,[n] = x3[n] for all n only if N is greater than or
equal to the length of the sequence x3[n]. As we showed in Section 8.7.1, if x;[n] has
length L and x;[#] has length P, then x3[n] has maximum length (L + P —1). Therefore,
the circular convolution corresponding to X;[k]Xz[k] is identical to the linear con-
volution corresponding to Xi(e/“)Xz(e/®) if N, the length of the DFTs, satisfies
N>L+P-1.

Example 8.12 Circular Convolution as Linear Convolution
with Aliasing

The results of Example 8.15 are easily understood in light of the interpretation just
discussed. Note that x;[n] and xz[r] are identical constant sequences of length L =
P = 6, as shown in Figure 8.18(a). The linear convolution of x;[r} and x[#] is
of length L+ P — 1 = 11 and has the triangular shape shown in Figure 8.18(b).
In Figures 8.18(c) and (d) are shown two of the shifted versions x3fn — rN] in
Eqg. (8.137), x3[n — N] and x3[n + N] for N = 6. The N-point circular convolution
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x3[n] = xy|n] * x,[n]

(b)

(d)

®

Figure 8.18 lllustration that circular convolution is equivalent to linear
convolution followed by aliasing. (a) The sequences x;[n] and xp[n] to be
convolved. (b) The linear convolution of x;[n] and xo[n]. (c) x3{n— N ] for N = 6.
(d) x3[n+ N ]for N = 6. (e) x;[n] (6) x,[n], which is equal to the sum of (b), (c),
and (d) in the interval 0 < n < 5. (f) x,{n] 42) xa[n].
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of x1[n] and xz[n] can be formed by using Eq. (8.137). This is shown in Figure 8.18(e)
for N = L = 6 and in Figure 8.18(f) for N = 2L = 12. Note that for N = L = 6, only
x3[n] and x3[n + N ] contribute to the result. For N = 21 = 12, only x3{n] contributes
to the result. Since the length of the linear convolution is (2. — 1), the result of the
circular convolution for N = 2L is identical to the result of linear convolution for all
0 <n < N - 1. In fact, this would be true for N =21 — 1 = 11 as well.

As Example 8.12 points out, time aliasing in the circular convolution of two finite-
length sequences can be avoidedif N > L + P — 1. Also,itisclearthatif N= L = P,
all of the sequence values of the circular convolution may be different from those
of the linear convolution. However, if P < L, some of the sequence values in an
L-point circular convolution will be equal to the corresponding sequence values of the
linear convolution. The time-aliasing interpretation is useful for showing this.

Consider two finite-duration sequences x;|#] and x;{#n], with x;[n] of length L and
x,|n) of length P, where P < L, asindicated in Figures 8.19(a) and 8.19(b), respectively.
Let us first consider the L-point circular convolution of x[n] and x;[#] and inquire as
to which sequence values in the circular convolution are identical to values that would
be obtained from a linear convolution and which are not. The linear convolution of
x1[n] with x;[n] will be a finite-length sequence of length (L + P — 1), as indicated in
Figure 8.19(c). To determine the L-point circular convolution, we use Egs. (8.137) and

(a)
. x2[n)
0 P "
(b)
07 ol = x1[n] + )
0 P L ’

L+P-1 Figure 8.19 An example of linear
convolution of two finite-length
(© sequences.
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(8.138) so that

0

x1[n] @ x2n] = Z xn—rl], O<n<LL-1,

r=—oxc
0, otherwise.

x3pln] = (8.139)

Figure 8.20(a) shows the term in Eq. (8.139) for r = 0, and Figures 8.20(b) and 8.20(c)
show the terms for r = —1 and r = +1, respectively. From Figure 8.20, it should be
clear that in the interval 0 < n < L — 1, x3,[n] is influenced only by x3[n] and x3[n + L].

In general, whenever P < L, only the term x3[n + L] will alias into the in-
terval 0 < n < L — 1. More specifically, when these terms are summed, the last
(P — 1) points of x3[n + L], which extend fromn = 0 ton = P — 2, will be added
to the first (P — 1) points of x3[n], and the last (P — 1) points of x3[n], extending
fromn = Lton = L+ P — 2, will be discarded. Then x3,[#] is formed by extract-
ing the portion for 0 < n < L — 1. Since the last (P — 1) points of x3[n + L] and
the last (P — 1) points of x3[#n] are identical, we can alternatively view the process
of forming the circular convolution x3,[#] through linear convolution plus aliasing as
taking the (P — I) values of x3[n] fromn = Lton = L+ P — 2 and adding them
to the first (P — 1) values of x3[n]. This process is illustrated in Figure 8.21 for the
case P = 4 and L. = 8. Figure 8.21(a) shows the linear convolution xz[#n]. with the
points for n > L denoted by open symbols, Note that only (P — 1) points forn > L
are nonzero. Figure 8.21(b) shows the formation of x3,[n] by “wrapping x3[n] around
on itself.” The first ( P — 1) points are corrupted by the time aliasing, and the remain-
ing points fromn = P —1ton = L — 1 (ie., the last L — P + 1 points) are not
corrupted; that is, they are identical to what would be obtained with a linear convolu-
tion.

From this discussion, it should be clear that if the circular convolution is of suffi-
cient length relative to the lengths of the sequences x;[#] and x;[n], then aliasing with
nonzero values can be avoided, in which case the circular convolution and linear con-
volution will be identical. Specifically, if, for the case just considered, x3[#] is replicated
with period N > L+ P — 1, then no nonzero overlap will occur. Figures 8.21(c) and
8.21(d) illustrate this case, again for P = 4 and L = 8, with N = 11.

8.7.3 Implementing Linear Time-Invariant Systems
Using the DFT

The previous discussion focused on ways of obtaining a linear convolution from a circu-
lar convolution. Since linear time-invariant systems can be implemented by convolution,
this implies that circular convolution (implemented by the procedure suggested at the
beginning of Section 8.7) can be used to implement these systems. To see how this can be
done, let us first consider an L-pointinput sequence x[n] and a P-point impulse response
h[n]. The linear convolution of these two sequences, which will be denoted by y[n], has
finite duration withlength (1+ P—1). Consequently, as discussed in Section 8.7.2, for the
circular convolution and linear convolution to be identical, the circular convolution must
have a length of at least (1.+ P — 1) points. The circular convolution can be achieved by



