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FILTER DESIGN TECHNIQUES

7.0 INTRODUCTION

Filters are a particularly important class of linear time-invariant systems. Strictly speak-
ing, the term frequency-selective filter suggests a system that passes certain frequency
components and totally rejects all others, but in a broader context any system that
modifies certain frequencies relative to others is also called a filter. While the primary
emphasis in this chapter is on the design of frequency-selective filters, some of the tech-
niques are more broadly applicable. Also, we concentrate on the design of causal filters,
although in many contexts filters need not be restricted to causal designs. Very often,
noncausal filters are designed and implemented by modifying causal designs.

The design of filters involves the following stages: (1) the specification of the
desired properties of the system, (2) the approximation of the specifications using a
causal discrete-time system, and (3) the realization of the system. Although these three
steps are certainly not independent, we focus our attention primarily on the second
step, the first being highly dependent on the application and the third dependent on the
technology to be used for the implementation. In a practical setting, the desired filter is
generally implemented with digital computation and used to filter a signal that is derived
from a continuous-time signal by means of periodic sampling followed by analog-to-
digital conversion. For this reason, it has become common to refer to discrete-time
filters as digital filters, even though the underlying design techniques most often relate
only to the discrete-time nature of the signals and systems.

When a discrete-time filter is to be used for discrete-time processing of continuous-
time signals in the configuration of Figure 7.1, the specifications for both the discrete-
time filter and the effective continuous-time filter are typically (but not always) given
in the frequency domain. This is especially common for frequency-selective filters such
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T T Figure 7.1 Basic system for
discrete-time filtering of
T T continuous-time signals.

as lowpass, bandpass, and highpass filters. As shown in Section 4.4, if a linear time-
invariant discrete-time system is used as in Figure 7.1, and if the input is bandlimited
and the sampling frequency is high enough to avoid aliasing, then the overall system
behaves as a linear time-invariant continuous-time system with frequency response

QT
i - {1 20T

In such cases, it is straightforward to convert from specifications on the effective
continuous-time filter to specifications on the discrete-time filter through the relation
o = QT. That is, H(e’*) is specified over one period by the equation

H(e!®) = Hy (1%) , lw| < 7. (7.1b)

This type of conversion is illustrated in Example 7.1.

Example 7.1 Determining Specifications
for a Discrete-Time Filter

Consider a discrete-time filter that is to be used to lowpass filter a continuous-time sig-
nal using the basic configuration of Figure 7.1. Specifically, we want the overall system
of that figure to have the following properties when the sampling rate is 10* samples/s
(T=10"*s):

1. The gain | Hog(j2)| should be within +0.01 of unity in the frequency band
0 < Q <27 (2000).

2. The gainshould be no greater than 0.001 in the frequency band 2 (3000) < Q.

Such a set of lowpass specifications on | Heg(jS2)} can be depicted as in Fig-

ure 7.2(a), where the limits of tolerable approximation error are indicated by the
shaded horizontal lines. For this specific example, the parameters would be

5; = 0.01,

82 = 0.001,

Qp = 27(2000),
Qs = 27 (3000).

Therefore, in this case, the ideal passband gain is unity. The passband gain varies
between (1 + 8;), and (1 — &), and the stopband gain varies betwen 0 and 3;. It is
common to express the maximum passband and stopband gains in units of decibels.
For this example:

ideal passband gain in decibels = 201log,,(1) =0dB
maximum passband gain in decibels = 20log,,(1.01) = 0.086 dB
maximum stopband gain in decibels = 201log;(0.001) = —60 dB
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Figure 7.2 (a) Specifications for effective frequency response of overall system
in Figure 7.1 for the case of a lowpass filter. (b) Corresponding specifications for
the discrete-time system in Figure 7.1.

Since the sampling rate is 10* samples/s, the gain of the overall system is iden-
tically zero above Q = 2x(5000), due to the ideal discrete-to-continuous (D/C) con-
verter in Figure 7.1.

The tolerance scheme for the discrete-time filter is shown in Figure 7.2(b). It is
the same as that in Figure 7.2(a), except that it is plotted as a function of normalized
frequency (w = QT), and it need only be plotted in the range 0 < w < 7, since the
remainder can be inferred from symmetry properties (assuming that s[n] is real) and
the periodicity of H(e/). From Eq. (7.1b), it follows that in the passbhand the magnitude
of the frequency response must approximate unity within an error of +41, i.e.,

(1-8) <|H(E*) =(1+81), ol <wp, (7.2)

where 81 = 0.01 and wp, = 27(2000) - 10~* = 0.47 radians. The other approximation
band is the stopband, in which the magnitude response must approximate zero with
an error less than 4&3; i.e.,

|H(e'®)| < 83, ws < |w| < 7. (7.3)

In this example, §; = 0.001 and w; = 27(3000) - 10~* = 0.67 radians. The pass-
band cutoff frequency w, and the stopband cutoff frequency w; are given in terms
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of normalized radian frequency or equivalently in terms of angle in the z-plane. To
approximate the ideal lowpass filter in this way with a realizable system, we must
provide a transition band of nonzero width (w; —wp) in which the magnitude response
changes smoothly from passband to stopband. The dashed curve in Figure 7.2(b) is the
magnitude response of a system that meets the prescribed specification.

There are many applications in which a discrete-time signal to be filtered is not
derived from a continuous-time signal, and there are a variety of means besides peri-
odic sampling for representing continuous-time signals in terms of sequences. (See,
for example, Steiglitz, 1965, and Oppenheim and Johnson, 1972.) Also, in most of the
design techniques that we discuss, the sampling period plays no role whatsoever in the
approximation procedure. For these reasons, we take the point of view that the filter
design problem begins from a set of desired specifications in terms of the discrete-
time frequency variable w. Depending on the specific application or context, these
specifications may or may not have been obtained from a consideration of filtering in
the framework of Figure 7.1.

Many of the filters used in practice are specified by a tolerance scheme similar
to that in Example 7.1, with no constraints on the phase response other than those
imposed implicitly by stability and causality requirements. For example, the poles of
the system function for a causal and stable infinite impulse response (IIR) filter must
lie inside the unit circle. Similarly, in designing finite impulse response (FIR) filters, we
often impose the constraint of a linear phase. This again removes the phase of the signal
from consideration in the design process.

Given a set of specifications in the form of Figure 7.2(b), we must determine the sys-
tem function of a discrete-time linear system whose frequency response falls within the
prescribed tolerances. This is a problem in functional approximation. Designing IIR fil-
ters implies approximation by a rational function of z, while designing FIR filters implies
polynomial approximation. Our discussion distinguishes between design techniques
that are appropriate for IIR filters and those that are appropriate for FIR filters. We
discuss a variety of design techniques for both types of filter, ranging from closed-form
procedures, which involve only substitution of design specifications into design formu-
las, to algorithmic techniques, in which a solution is obtained by an iterative procedure.

7.1 DESIGN OF DISCRETE-TIME IIR FILTERS
FROM CONTINUOUS-TIME FILTERS

The traditional approach to the design of discrete-time IIR filters involves the transfor-
mation of a continuous-time filter into a discrete-time filter meeting prescribed specifi-
cations. This is a reasonable approach for several reasons:

e The art of continuous-time IIR filter design is highly advanced, and since useful
results can be achieved, it is advantageous to use the design procedures already
developed for continuous-time filters.

e Many useful continuous-time IIR design methods have relatively simple closed-
form design formulas. Therefore, discrete-time IIR filter design methods based on
such standard continuous-time design formulas are rather simple to carry out.
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e The standard approximation methods that work well for continuous-time IIR
filters do not lead to simple closed-form design formulas when these methods are
applied directly to the discrete-time IIR case.

The fact that continuous-time filter designs can be mapped to discrete-time filter
designs is totally unrelated to, and independent of, whether the discrete-time filter is to
be used in the configuration of Figure 7.1 for processing continuous-time signals. We em-
phasize again that the design procedure for the discrete-time system begins from a set of
discrete-time specifications. Henceforth, we assume that these specifications have been
determined by an analysis like that of Example 7.1 or by some other method. We will use
continuous-time filter approximation methods only as a convenience in determining the
discrete-time filter that meets the desired specifications. Indeed, the continuous-time
filter on which the approximation is based may have a frequency response that is vastly
different from the effective frequency response when the discrete-time filter is used in
the configuration of Figure 7.1.

In designing a discrete-time filter by transforming a prototype continuous-time
filter, the specifications for the continuous-time filter are obtained by a transformation
of the specifications for the desired discrete-time filter. The system function H.(s) or
impulse response k() of the continuous-time filter is then obtained through one of the
established approximation methods used for continuous-time filter design, examples of
which are discussed in Appendix B. Next, the system function H(z) or impulse response
h{n] for the discrete-time filter is obtained by applying to H.(s) or h.(t) a transformation
of the type discussed in this section. _

In such transformations, we generally require that the essential properties of the
continuous-time frequency response be preserved in the frequency response of the
resulting discrete-time filter. Specifically, this implies that we want the imaginary axis
of the s-plane to map onto the unit circle of the z-plane. A second condition is that a
stable continuous-time filter should be transformed to a stable discrete-time filter. This
means that if the continuous-time system has poles only in the left half of the s-plane,
then the discrete-time filter must have poles only inside the unit circle in the z-plane.
These constraints are basic to all the techniques discussed in this section.

7.1.1 Filter Design by Impulse Invariance

In Section 4.4.2 we discussed the concept of impulse invariance, wherein a discrete-
time system is defined by sampling the impulse response of a continuous-time system.
We showed that impulse invariance provides a direct means of computing samples
of the output of a bandlimited continuous-time system for bandlimited input signals.
Alternatively, in the context of filter design, we can think of impulse invariance as a
method for obtaining a discrete-time system whose frequency response is determined
by the frequency response of a continuous-time system.

In the impulse invariance design procedure for transforming continuous-time fil-
ters into discrete-time filters, the impulse response of the discrete-time filter is chosen
proportional to equally spaced samples of the impulse response of the continuous-time
filter; i.e.,

h{n] = Tyh(nTy), (7.4)
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where T; represents a sampling interval. As we will see, because we begin the design
problem with the discrete-time filter specifications, the parameter T; in Eq. (7.4) in
fact has no role whatsoever in the design process or the resulting discrete-time filter.
However, since it is customary to specify this parameter in defining the procedure, we
include it in the following discussion. As we will see, even if the filter is used in the basic
configuration of Figure 7.1, the design sampling period T; need not be the same as the
sampling period T associated with the C/D and D/C conversion.

When impulse invariance is used as a means for designing a discrete-time filter
with a specified frequency response, we are especially interested in the relationship
between the frequency responses of the discrete-time and continuous-time filters. From
the discussion of sampling in Chapter 4, it follows that the frequency response of the
discrete-time filter obtained through Eq. (7.4) is related to the frequency response of
the continuous-time filter by

) ad o) 27
H(e!®) = H|lj=—+j=k). 7.5
() kZ c(de+de) (7.5)
=—co
If the continuous-time filter is bandlimited, so that
H.(j2) =0, 12| > n/ T, (7.6)
then
H(e’®) = H, (12) , lw| < ;5 (7.7)
Ty

i.e., the discrete-time and continuous-time frequency responses are related by a linear
scaling of the frequency axis, namely, » = QT for |w| < 7. Unfortunately, any practical
continuous-time filter cannot be exactly bandlimited, and consequently, interference
between successive terms in Eq. (7.5) occurs, causing aliasing, as illustrated in Fig-
ure 7.3. However, if'the continuous-time filter approaches zero at high frequencies, the
aliasing may be negligibly small, and a useful discrete-time filter can result from the
sampling of the impulse response of a continuous-time filter.

In the impulse invariance design procedure, the discrete-time filter specifications
are first transformed to continuous-time filter specifications through the use of Eq. (7.7).
Assuming that the aliasing involved in the transformation from H.(j2) to H(e/®) will
be negligible, we obtain the specifications on H.(j$2) by applying the relation

Q=w/T, (7.8)
)
Hc(] Td)
/\
w
H(ej"")
- 1— ==t~ -
7 ~ ” ~ ” ~
e \\y’/ SN L7 \\\
=2 2ar w

Figure 7.3 lllustration of aliasing in
the impulse invariance design technique.
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to obtain the continuous-time filter specifications from the specifications on H(e/®).
After obtaining a suitable continuous-time filter based on these specifications, the
continuous-time filter with system function H.(s) is transformed to the desired discrete-
time filter with system function H{z). We develop the algebraic details of the transfor-
mation from H.(s) to H(z) shortly. Note, however, that in the transformation back
to discrete-time frequency, H(e’®) will be related to H.(jQ) through Eq. (7.5), which
again applies the transformation of Eq. (7.8) to the frequency axis. As a consequence,
the “sampling” parameter T; cannot be used to control aliasing. Since the basic specifi-
cations are in terms of discrete-time frequency, if the sampling rate is increased (i.e., if 7,
is made smaller), then the cutoff frequency of the continuous-time filter must increase
in proportion. In practice, to compensate for aliasing that might occur in the transfor-
mation from H.(s) to H(z), the continuous-time filter may be somewhat overdesigned,
i.e., designed to exceed the specifications, particularly in the stopband.

While the impulse invariance transformation from continuous time to discrete
time is defined in terms of time-domain sampling, it is easy to carry out as a transforma-
tion on the system function. To develop this transformation, let us consider the system
function of the continuous-time filter expressed in terms of a partial fraction expansion,
so that!

N
His) =Y 25 (19)

The corresponding impulse response is

N
Ae™, t>0,
he(t) = k\L:; ke = (7.10)
0, t <0.
The impulse response of the discrete-time filter obtained by sampling T;h.(2) is

N
h[n] = Tuhe(nTy) = Ty Ace™"Tun]

k=1
N (7.11)
=" TiAe™* Y uln].
k=1
The system function of the discrete-time filter is therefore given by
N
Ta AL

In comparing Egs. (7.9) and (7.12), we observe that a pole at s = s, in the s-plane
transforms to a pole at z = e**’¢ in the z-plane and the coefficients in the partial fraction
expansions of H.(s) and H(z) are equal, except for the scaling multiplier 7. If the
continuous-time filter is stable, corresponding to the real part of s, being less than zero,
then the magnitude of e**7 will be less than unity, so that the corresponding pole in the
discrete-time filter is inside the unit circle. Therefore, the causal discrete-time filter is

1For simplicity, we assume in the discussion that all poles of H(s) are single order. In Problem 7.24,
we consider the modifications required for multiple-order poles.



446 Filter Design Techniques Chap. 7

also stable. While the poles in the s-plane map to poles in the z-plane according to the
relationship z; = e, it is important to recognize that the impulse invariance design
procedure does not correspond to a simple mapping of the s-plane to the z-plane by that
relationship. In particular, the zeros in the discrete-time system function are a function
of the poles and the coefficients T; A, in the partial fraction expansion, and they will not
in general be mapped in the same way the poles are mapped. We illustrate the impulse
invariance design procedure with the following example.

Example 7.2 Impuise Invariance with a Butterworth Filter

Let us consider the design of a lowpass discrete-time filter by applying impulse invari-
ance to an appropriate Butterworth continuous-time filter.2 The specifications for the
discrete-time filter are

0.89125 < |H(e/*) <1, 0 <|w] <0.2n, (7.13a)
|H(e!®)| < 0.17783, 037 < |w| < 7. (7.13b)

Since the parameter 7 cancels in the impulse invariance procedure, we can choose
Ty = 1, so that w = Q. In Problem 7.2, this same example is considered, but with the
parameter T; explicitly included to illustrate how and where it cancels.

In designing the filter using impulse invariance on a continuous-time Butter-
worth filter, we must first transform the discrete-time specifications to specifications
on the continuous-time filter. Recall that impulse invariance corresponds to a linear
mapping between 2 and w in the absence of aliasing. For this example, we will assume
that the effect of aliasing is negligible. After the design is complete, we can evaluate
the resulting frequency response against the specifications in Eqgs. (7.13a) and (7.13b).

Because of the preceding considerations, we want to design a continuous-time
Butterworth filter with magnitude function | H.(j$2)| for which

0.89125 < |H(jQ) <1, 0<(Q <02, (7.14a)
|H(j Q)| < 0.17783, 037 < |Q| < . (7.14b)

Since the magnitude response of an analog Butterworth filter is a monotonic function
of frequency, Egs. (7.14a) and (7.14b) will be satisfied if

|H:(jO.2rr)| > 0.89125 (7.15a)
and
|H(j0.37)] < 0.17783. (7.15b)
Specifically, the magnitude-squared function of a Butterworth filter is of the
form
e 12 1
| H (" = —5-oan (7.16)

Tl (Q/ Q)N

so that the filter design process consists of determining the parameters N and . to
meet the desired specifications. Using Eq. (7.16) in Egs. (7.15) with equality leads

2Continuous-time Butterworth and Chebyshev filters are discussed in Appendix B.
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to the equations
2N 5
02x 1
t ( Q ) - (0.89125) (7.17a)
and
2N 2
037 1
- : 17
1+( Q ) (0.17783) (7.17b)

The solution of these two equations is ¥ = 5.8858 and Q. = 0.70474. The pa-
rameter N, however, must be an integer. Therefore, so that the specifications are met or
exceeded, we mustround N up to the nearest integer, N = 6. Because we have rounded
N up to the next highest integer, the filter will not exactly satisfy both Eqs. (7.17a) and
(7.17b) simultaneously. With N = 6, the filter parameter Q. can be chosen to exceed
the specified requirements in either the passband, the stopband, or both. Specifically,
as the value of Q. varies, there is a trade-off in the amount by which the stopband
and passband specifications are exceeded. If we substitute N = 6 into Eq. (7.17a), we
obtain Q. = 0.7032. With this value, the passband specifications (of the continuous-
time filter) will be met exactly, and the stopband specifications (of the continuous-time
filter) will be exceeded. This allows some margin for aliasing in the discrete-time filter.
With Q. = 0.7032 and with N = 6, the 12 poles of the magnitude-squared function
H.(s)H.(—s) = 1/[1 + (s/jS)*¥] are uniformly distributed in angle on a circle of
radius Q. = 0.7032, as indicated in Figure 7.4. Consequently, the poles of H.(s) are
the three pole pairs in the left half of the s-plane with the following coordinates:

Pole pair 1: —0.182 + j(0.679),
Pole pair 2: —0.497 + j(0.497),
Pole pair 3: —0.679 + j(0.182).

o
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Figure 7.4 s-plane locations for poles of H(s)H.(—s) for sixth-order
Butterworth fiiter in Example 7.2.

Therefore,

0.12093
(s2 + 0.3640s -+ 0.4945)(s2 + 0.9945s + 0.4945)(sZ + 1.35855 + 0.4945)

(7.18)

H.(s) =
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Figure 7.5 Frequency response of sixth-order Butterworth filter transformed by
impulse invariance. (a) Log magnitude in dB. (b) Magnitude. (c) Group delay.
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If we express H.(s) as a partial fraction expansion, perform the transformation of
Eq. (7.12), and then combine complex-conjugate terms, the resulting system function
of the discrete-time filter is

0.2871 — 0.446677! N —2.1428 + 1.1455z71
1-12971z-1+0.6949z-2 ~ 1 — 1.0691z~1 + 0.3699z2

1.8557 — 0.6303z~!
1-0.9972z71 + 0257022

Asisevident from Eq. (7.19), the system function resulting from the impulse invariance
design procedure may be realized directly in parallel form. If cascade or direct form
is desired, the separate second-order terms must be combined in an appropriate way.
The frequency-response functions of the discrete-time system are shown in Fig-
ure 7.5. Recall that the prototype continuous-time filter was designed to meet the
specifications exactly at the passband edge and to exceed the specifications at the
stopband edge, and this turns out to be true for the resulting discrete-time filter. This
is an indication that the continuous-time filter was sufficiently bandlimited so that
aliasing presented no problem. Indeed, the difference between 20log,, | H(e/*)| and
20log,, | H:(jS2)| would not be visible on this plotting scale, except for a slight devi-
ation around w = n. (Recall that T; = 1, s0 = w.) Sometimes, aliasing is much
more of a problem. If the resulting discrete-time filter fails to meet the specifications
because of aliasing, there is no alternative with impulse invariance but to try again
with a higher order filter or with different filter parameters, holding the order fixed.

H(z) =

(7.19)

The basis for impulse invariance is to choose an impulse response for the discrete-
time filter that is similar in some sense to the impulse response of the continuous-time
filter. The use of this procedure is often motivated not so much by a desire to maintain
the shape of the impulse response as by the knowledge that if the continuous-time filter is
bandlimited, then the discrete-time filter frequency response will closely approximate
the continuous-time frequency response. However, in some filter design problems, a
primary objective may be to control some aspect of the time response, such as the
impulse response or the step response. In these cases, a natural approach might be
to design the discrete-time filter by impulse invariance or by step invariance. In the
latter case, the response of the filter to a sampled unit step function is defined to be the
sequence obtained by sampling the continuous-time step response. If the continuous-
time filter has good step response characteristics, such as a small rise time and low peak
overshoot, these characteristics will be preserved in the discrete-time filter. Clearly,
this concept of waveform invariance can be extended to the preservation of the output
waveshape for a variety of inputs, as illustrated in Problem 7.1. The problem points up
the fact that transforming the same continuous-time filter by impulse invariance and
also by step invariance (or some other waveform invariance criterion) does not lead to
the same discrete-time filter in the two cases.

In the impulse invariance design procedure, the relationship between continuous-
time and discrete-time frequency is linear; consequently, except for aliasing, the shape
of the frequency response is preserved. This is in contrast to the procedure discussed
next, which is based on an algebraic transformation. We note, in concluding this subsec-
tion, that the impulse invariance technique is appropriate only for bandlimited filters;
highpass or bandstop continuous-time filters, for example, would require additional
bandlimiting to avoid severe aliasing distortion if impulse invariance design is used.
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7.1.2 Bilinear Transformation

The technique discussed in this subsection avoids the problem of aliasing by using
the bilinear transformation, an algebraic transformation between the variables s and z
that maps the entire jQ-axis in the s-plane to one revolution of the unit circle in the
z-plane. Since —o0 < 2 < co maps onto —7 < w < m, the transformation between the
continuous-time and discrete-time frequency variables must be nonlinear. Therefore,
the use of this technique is restricted to situations in which the corresponding warping
of the frequency axis is acceptable.

With H (s) denoting the continuous-time system function and H(z) the discrete-
time system function, the bilinear transformation corresponds to replacing s by

2 [1-—z71
s T (1 + Z-l) ( )
that is,
2 /1—z71
H(zY=H.|=— . 7.21
@ =47 (75| 72D

As in impulse invariance, a “sampling” parameter 7; is included in the definition of
the bilinear transformation. Historically, this parameter has been included because the
difference equation corresponding to H(z) can be obtained by applying the trapezoidal
integration rule to the differential equation corresponding to H.(s), with 7; represent-
ing the step size of the numerical integration. (See Kaiser, 1966, and Problem 7.43.)
However, in filter design, our use of the bilinear transformation is based on the proper-
ties of the algebraic transformation given in Eq. (7.20). As with impulse invariance, the
parameter 7, is of no consequence in the design procedure, since we assume that the de-
sign problem always begins with specifications on the discrete-time filter H(e/®). When
these specifications are mapped to continuous-time specifications and the continuous-
time filter is then mapped back to a discrete-time filter, the effect of T; will cancel.
Although we will retain the parameter 7; in our discussion, in specific problems and
examples any convenient value of 7; can be chosen.

To develop the properties of the algebraic transformation specified in Eq. (7.20),
we solve for z to obtain

_ 1+ (T4/2)s (7.22)

I (Tuos
and, substituting s = o + j into Eq. (7.22), we obtain
1 24 jQT,/2
_1+0T75/2+ JQT4/ (7.23)

S W Y, T YN

If o < 0, then, from Eq. (7.23), it follows that {z| < 1 for any value of €. Similarly, if
o > 0, then |z| > 1 for all . That is, if a pole of H.(s) is in the left-half s-plane, its
image in the z-plane will be inside the unit circle. Therefore, causal stable continuous-
time filters map into causal stable discrete-time filters.
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Next, to show that the jQ2-axis of the s-plane maps onto the unit circle, we substi-
tute s = jQ into Eq. (7.22), obtaining

_ 1+ jQT,/2

= o/ 7.24
S BT oY ) (7:24)

From Eq. (7.24), it is clear that |z| = 1 for all values of s on the jQ-axis. That is, the
jS2-axis maps onto the unit circle, so Eq. (7.24) takes the form
_ 14+ jQTy/2
1 QT2

jw

(7.25)

To derive a relationship between the variables w and £2, it is useful to return to
Eq. (7.20) and substitute z = ¢/“. We obtain

2 [1—ei®
_ “Y. 7.26
s=2 (100) (7.26)

or, equivalently,

s=0+ jQ =

2 [2e7/2(jsinw/2) 2j
— . ==t 2). 7.27
T, [Ze—l‘“/z(cosa)/Z)] Ty an(w/2) (7.27)
Equating real and imaginary parts on both sides of Eq. (7.27) leads to the relations
o =0and

Q= 1 tan(w/2), (7.28)
Ty
or
w = 2 arctan(Q7;/2). (7.29)

These properties of the bilinear transformation as a mapping from the s-plane to
the z-plane are summarized in Figures 7.6 and 7.7. From Eq. (7.29) and Figure 7.7, we
see that the range of frequencies 0 < Q < oo maps to 0 < w < =, while the range
—o0 < 2 < Omaps to —7 < w < 0. The bilinear transformation avoids the problem
of aliasing encountered with the use of impulse invariance, because it maps the entire
imaginary axis of the s-plane onto the unit circle in the z-plane. The price paid for this,
however, is the nonlinear compression of the frequency axis depicted in Figure 7.7. Con-
sequently, the design of discrete-time filters using the bilinear transformation is useful
only when this compression can be tolerated or compensated for, as in the case of filters
that approximate ideal piecewise-constant magnitude-response characteristics. This is
illustrated in Figure 7.8, where we show how a continuous-time frequency response
and tolerance scheme maps to a corresponding discrete-time frequency response and
tolerance scheme through the frequency warping of Egs. (7.28) and (7.29). If the critical
frequencies (such as the passband and stopband edge frequencies) of the continuous-
time filter are prewarped according to Eq. (7.28) then, when the continuous-time filter
is transformed to the discrete-time filter using Eq. (7.21), the discrete-time filter will
meet the desired specifications.
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Figure 7.6 Mapping of the s-plane
onto the z-plane using the bilinear
transformation.

Figure 7.7 Mapping of the
continuous-time frequency axis onto the
discrete-time frequency axis by bilinear
transformation.

Figure 7.8 Frequency warping
inherent in the bilinear transformation of
a continuous-time lowpass filter into a
discrete-time lowpass filter. To achieve
the desired discrete-time cutoff
frequencies, the continuous-time cutoff
frequencies must be prewarped as
indicated.
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Typical frequency-selective continuous-time approximations are Butterworth,
Chebyshev, and elliptic filters. The closed-form design formulas of these continuous-
time approximation methods make the design procedure rather straightforward. As
discussed in Appendix B a Butterworth continuous-time filter is monotonic in the pass-
band and in the stopband. A type I Chebyshev filter has an equiripple characteristic in
the passband and varies monotonically in the stopband. A type II Chebysheyv filter is
monotonic in the passband and equiripple in the stopband. An elliptic filter is equiripple
in both the passband and the stopband. Clearly, these properties will be preserved when
the filter is mapped to a digital filter with the bilinear transformation. This is illustrated
by the dashed approximation shown in Figure 7.8.

Although the bilinear transformation can be used effectively in mapping a
piecewise-constant magnitude-response characteristic from the s-plane to the z-plane,
the distortion in the frequency axis also manifests itself as a warping of the phase re-
sponse of the filter. For example, Figure 7.9 shows the result of applying the bilinear
transformation to an ideal linear phase factor e~**. If we substitute Eq. (7.20) for s
and evaluate the result on the unit circle, the phase angle is —(2a/ T;) tan{w/2). In Fig-
ure 7.9, the solid curve shows the function —(2a/ T;) tan(w/2), and the dotted curve
is the periodic linear phase function —(wa/ T;), which is obtained by using the small
angle approximation w/2 = tan(w/2). From this, it should be evident that if we were
interested in a discrete-time lowpass filter with a linear phase characteristic, we could
not obtain such a filter by applying the bilinear transformation to a continuous-time
lowpass filter with a linear phase characteristic.

As mentioned previously, because of the frequency warping, the use of the
bilinear transformation is restricted to the design of approximations to filters with

<« H(e*)

Figure 7.9 lllustration of the effect of the bilinear transformation on a linear phase
characteristic. (Dashed line is linear phase and solid line is phase resulting from
bilinear transformation.)



454 Filter Design Techniques Chap.7

piecewise-constant frequency magnitude characteristics, such as highpass, lowpass and
bandpass filters. As demonstrated in Example 7.2, impulse invariance can also be used
to design lowpass filters. However, impulse invariance cannot be used to map highpass
continuous-time designs to highpass discrete-time designs, since highpass continuous-
time filters are not bandlimited.

In Example 4.5, we discussed a class of filters often referred to as discrete-time
differentiators. A significant feature of the frequency response of this class of filters
is that it is linear with frequency. The nonlinear warping of the frequency axis intro-
duced by the bilinear transformation will not preserve that property. Consequently, the
bilinear transformation applied to a continuous-time differentiator will not result in a
discrete-time differentiator. However, impulse invariance applied to an appropriately
bandlimited continuous-time differentiator will result in a discrete-time differentiator.

7.1.3 Examples of Bilinear Transformation Design

In the following discussion, we present a number of examples to illustrate IIR filter de-
sign using the bilinear transformation. Example 7.3 serves to illustrate the design proce-
dure based on the bilinear transformation, in comparison with the use of impulse invari-
ance. Examples 7.4, 7.5, and 7.6 illustrate a Butterworth, Chebyshev, and elliptic filter,
respectively, each designed to the same specifications using the bilinear transformation.

Example 7.3 Bilinear Transformation
of a Butterworth Filter

Consider the discrete-time filter specifications of Example 7.2, in which we illustrated
the impulse invariance technique for the design of a discrete-time filter. The specifica-
tions on the discrete-time filter are

0.89125 < |H(e/®)| <1, 0<w=<0.2n, (7.30a)
|H(e'*)| < 0.17783, 037 <w<m. (7.30b)

In carrying out the design using the bilinear transformation, the critical frequencies of
the discrete-time filter must be prewarped to the corresponding continuous-time fre-
quencies using Eq. (7.28) so that the frequency distortion inherent in the bilinear trans-
formation will map the continuous-time frequencies back to the correct discrete-time
critical frequencies. For this specific filter, with | H.(j$2)| representing the magnitude-
response function of the continuous-time filter, we require that

0.89125 < |H.(jR)| < 1, 0<Q=< % tan (9%) , (7.31a)
d
2 .
|H(j2)| < 0.17783, 7 tan (9—;£> <Q < oo (7.31b)
d

For convenience, we choose T; = 1. Also, as with Example 7.2, since a continuous-time
Butterworth filter has a monotonic magnitude response, we can equivalently require
that

|H:(j2tan(0.1))| > 0.89125 (7.32a)
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and
|H:(j2 tan(0.157))| < 0.17783. (7.32b)

The form of the magnitude-squared function for the Butterworth filter is

IH (R = Tglm—)m (7.33)

Solving for N and Q. with the equality sign in Egs. (7.32a) and (7.32b), we obtain

2N 2
2tan(0.17) _ 1
1+ (_Qc ) = ( 089 89) (7.34a)
and
2N 2
2tan(0.157) _ 1
1+ ( o ) = (0.178) ’ (7.34b)

and solving for N in Eqs. (7.34a) and (7.34b) gives

(ot 1) / (1)

- 2 log[tan(0.157)/ tan(0.17)] (7.35)
= 5.305.

Since N must be an integer, we choose N = 6. Substituting N = 6 into
Eq. (7.34b), we obtain Q. = 0.766. For this value of @, the passband specifications
are exceeded and the stopband specifications are met exactly. This is reasonable for
the bilinear transformation, since we do not have to be concerned with aliasing. That
is, with proper prewarping, we can be certain that the resulting discrete-time filter will
meet the specifications exactly at the desired stopband edge. ‘

In the s-plane, the 12 poles of the magnitude-squared function are uniformly
distributed in angle on a circle of radius 0.766, as shown in Figure 7.10. The sys-
tem function of the continuous-time filter obtained by selecting the left half-plane

a
L S s-plane
\ $m /
\ /
\ !
XX
70 I~
XA lloX
v/
/
/A"y
X \\/ M X
I
v I QRe
)$ X
\\( )/
.~ X
XX

Figure 7.10 s-plane locations for poles of H.(s)H.(—s) for sixth-order
Butterworth filter in Example 7.3.
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Figure 7.11 Frequency response of sixth-order Butterworth filter transformed by
bilinear transform. (a) Log magnitude in dB. {b) Magnitude. (c) Group delay.
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poles is

0.20238
~ (52 + 039965 + 0.5871)(s2 + 1.0836s + 0.5871)(sZ + 1.4802s + 0.5871)

(7.36)

H(s)

The system function for the discrete-time filter is then obtained by applying the bilinear
transformation to H.(s) with 7; = 1. The result is

0.0007378(1 + z~1)®
(1 —1.2686z-1 4+ 0.7051z-2)(1 — 1.0106z~! + 0.35837-2)

H(z) =

(7.37)
1

* (1 —09044z-1 +02155z-2)

The magnitude, log magnitude, and group delay of the frequency response of the
discrete-time filter are shown in Figure 7.11. At = 0.27 the log magnitude is
—0.56 dB, and at w = 0.3 the log magnitude is exactly —15 dB.

Since the bilinear transformation maps the entire jQ-axis of the s-plane onto
the unit circle in the z-plane, the magnitude response of the discrete-time filter falls
off much more rapidly than that of the original continuous-time filter. In particular,
the behavior of H(e/®) at w = 7 corresponds to the behavior of H.(j$2) at Q = oc.
Therefore, since the continuous-time Butterworth filter has a sixth-orderzero ats = oo,
the resulting discrete-time filter has a sixth-order zero at z = —1.

It is interesting to note that, since the general form of the Nth-order Butter-
worth continuous-time filter is as given by Eq. (7.33), and since w and Q are related
by Eq. (7.28), it follows that the general Nth-order Butterworth discrete-time filter has
magnitude-squared function

1

tan(w/2) \ 2V’
t (tan(wc/z))

[H(e!)? = (7.38)

where tan(w./2) = Q. T,4/2. .

The frequency-response function of Eq. (7.38) has the same properties as the
continuous-time Butterworth response; i.e., it is maximally flat®> and | H(e/*)|? = 0.5.
However, the function in Eq. (7.38) is periodic with period 2 and falls off more sharply
than the continuous-time Butterworth response.

We do not design discrete-time Butterworth filters directly by starting with
Eq. (7.38), because it is not straightforward to determine the z-plane locations of the
poles (all the zeros are at z = —1) associated with the magnitude-squared function of
Eq. (7.38). It is necessary to determine the poles so as to factor the magnitude-squared

3The first (2N — 1) derivatives of | H(e/*)|? are zero at w = 0.
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function into H(z)H(z™!) and thereby determine H(z). It is much easier to find the
s-plane pole locations (all the zeros are at infinity), factor the continuous-time system
function, and then transform the left half-plane poles by the bilinear transformation as
we did in Example 7.3.

Equations of the form of Eq. (7.38) may also be obtained for discrete-time
Chebyshev filters, but the same difficulties arise in their use. Thus, the two-step approach
just described has become the established method of designing IIR frequency-selective
filters.

The major approximation methods for frequency-selective IIR analog filters are
the Butterworth, Chebysheyv, and elliptic function approximation methods. The details
of these methods can be found in Guillemin (1957), Daniels (1974), Weinberg (1975),
and Lam (1979). The methods are generally explained and developed in terms of lowpass
filter approximations. This is the approach followed in Appendix B, where we summarize
the essential features of some of the methods. In the next three examples, we illustrate
the realization of a set of filter specifications for each of these classes of filters. The details
of the design computations are not presented, since they are tedious and lengthy and are
best carried out by computer programs that incorporate the appropriate closed-form
design equations.

The lowpass discrete-time filter specifications for these examples are those used
in Example 7.1, i.e.,

0.99 < |H(e/*)| < 1.01, lw| < 0.4, (7.39a)

and
|H(e/?)| <0.001,  0.67 < |w| < 7. (7.39b)

In terms of the tolerance scheme of Figure 7.2(b), 8, = 0.01, §; = 0.001, w, = 0.47, and
ws = 0.67. These specifications are sufficient to determine the input parameters to the
Butterworth, Chebyshev, and elliptic design formulas. Note that the specifications are
only on the magnitudes of the frequency response. The phase is implicitly determined
by the nature of the approximating functions.

Example 7.4 Butterworth Approximation

For the specification of Eqs. (7.3%a) and (7.39b), the Butterworth approximation
method requires a system of 14th order. The frequency response of the discrete-
time filter that results from the bilinear transformation of the appropriate prewarped
Butterworth filter is shown in Figure 7.12. Figure 7.12(a) shows the log magnitude in
dB, Figure 7.12(b) shows the magnitude of H(e/?) in the passband only, and Figure
7.12(c) shows the group delay of the filter. From these plots, we see that the Butter-
worth frequency response decreases monotonically with frequency and the gain of the
filter becomes very small above about w = 0.77. Note from Figure 7.12(b) that in this
example the Butterworth frequency response has been normalized so that it has gain
greater than unity in the passband as is allowed in the specifications in Egs. (7.39).
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Figure 7.12 Frequency response of 14th-order Butterworth filter in Example 7 4.
(a) Log magnitude in dB. (b) Detailed plot of magnitude in passband. (c) Group
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Figure 7.13  Pole-zero plot of
14th-order Butterworth filter in
Example 7 4.

In the Butterworth example, the specifications are exceeded at the passband and

stopband

edges because of rounding the order up to the next integer. However, the

specifications are far exceeded in the stopband. The reason for this is evident from Fig-
ure 7.13, which shows the pole—zero plot for the 14th-order Butterworth filter. Because
the continuous-time Butterworth filter has 14 zeros at s = oo, the bilinear transforma-
tion creates 14 zeros at z = —1 for the discrete-time filter. It is reasonable to expect that
a lower order filter might still satisfy the specifications, even if it did not exceed them so
greatly in the stopband. This expectation motivates the use of Chebyshev or equiripple
approximation.

Example 7.5 Chebyshev Approximation

This method has two forms. Chebyshev type I approximations have equiripple be-
havior in the passband, and Chebyshev type II approximations have equiripple be-
havior in the stopband. Both methods lead to the same order for a given set of spec-
ifications. For the specifications of Egs. (7.39a) and (7.39b), the required order is 8
rather than 14, as for the Butterworth approximation. Figure 7.14 shows the log mag-
nitude, passband magnitude, and group delay for the type I approximation to the
specifications of Egs. (7.39a) and (7.39b). Note that the frequency response oscillates
with equal maximum error on either side of the desired gain of unity in the pass-
band.

Figure 7.15 shows the frequency-response functions for the Chebyshev type 11
approximation to the specifications of Egs. (7.39a) and (7.39b). In this case, the equi-
ripple approximation behavior is in the stopband. The pole—zero plots for the
Chebyshev filters are shown in Figure 7.16. Note that the Chebyshev type I system
is similar to the Butterworth system in that it has all eight of its zeros at z = —1. On
the other hand, the type II system has its zeros arrayed on the unit circle. These zeros
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Figure 7.14 Frequency response of eighth-order Chebyshev type | filter in
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Figure 7.16 Pole-zero plot of eighth-order Chebyshev filters in Example 7.5.
(@) Type 1. (b) Type II.

are positioned by the design equations so as to achieve the equiripple behavior in the
stopband.

In both cases of Chebyshev approximation, the monotonic behavior in either
the stopband or the passband suggests that perhaps a lower order system might be
obtained if equiripple approximation were used in both the passband and the stopband.
Indeed, it can be shown (see Papoulis, 1957) that for fixed values of &1, §3, wp, and w;
in the tolerance scheme of Figure 7.2(b), the lowest order filter is obtained when the
approximation error ripples equally between the extremes of the two approximation
bands. Since this equiripple behavior is achieved with a rational function that involves
elliptic functions, such systems are generally called elliptic filters.

Example 7.6 Elliptic Approximation?

The specifications of Egs. (7.39a) and (7.39b) are met by an elliptic filter of order
six. This is the lowest order rational function approximation to the specifications.
Figure 7.17 clearly shows the equiripple behavior in both approximation bands. Fig-
ure 7.18 shows that the elliptic filter, like the Chebyshev type II, has its zeros arrayed
in the stopband region of the unit circle.

4The design equations for elliptic filters are too involved to be appropriately summarized in Ap-
pendix B. They can be found in Storer {1957), Weinberg (1975), and Parks and Burrus {1987). A program for
elliptic filter design was given by Gray and Markel (1976), and extensive tables for elliptic filter designs are
available in Zverev (1967). All three types of filters can be designed using functions in the Signal Processing
Toolbox of MaTLAB®,



dB

Amplitude

Samples

1.010

:

:

o
&

0.99%0

25

20

15

10

Filter Design Techniques
| ] ] ]
02=n 04m 0.6 0.87
Radian frequency (w)

(2)
| ] |
027 0.4 0.6 0.87
Radian frequency (w)
(b)
| | ] 1
02n 04nm 0.6m 0.87
Radian frequency (w)
()

Chap. 7

Figure 7.17 Frequency response of sixth-order elliptic filter in Example 7.6.
(a) Log magnitude in dB. (b) Detailed plot of magnitude in passband. (c) Group

delay.



Sec. 7.2 Design of FIR Filters by Windowing 465

Sm z-plane
Unit
circle

Re

Figure 7.18 Pole—zero plot of sixth-order elliptic filter in Example 7.6.

Bilinear transformation of analog filters designed by Butterworth, Chebysheyv,
or elliptic approximation methods is a standard method of design of IIR discrete-time
filters. The previous examples illustrate several important general features of such filters.
In all cases, the resulting system function H(z) has all its zeros on the unit circle and (for
stability) all its poles inside the unit circle. As a result, all the approximation methods
yield digital filters with nonconstant group delay or, equivalently, nonlinear phase. The
greatest deviation from constant group delay occurs in all cases at the edge of the
passband or in the transition band. In general, the Chebyshev type II approximation
method yields the smallest delay in the passband and the widest region of the passband
over which the group delay is approximately constant. However, if phase linearity is
not an issue, then elliptic approximation yields the lowest order system function, and
therefore, elliptic filters will generally require the least computation to implement a
given filter specification.

7.2 DESIGN OF FIR FILTERS BY WINDOWING

As discussed in Section 7.1, commonly used techniques for the design of IIR filters
are based on transformations of continuous-time IIR systems into discrete-time IIR
systems. This is partly because continuous-time filter design was a highly advanced
art before discrete-time filters were of interest and partly because of the difficulty of
implementing a noniterative direct design method for IIR filters.

In contrast, FIR filters are almost entirely restricted to discrete-time implementa-
tions. Consequently, the design techniques for FIR filters are based on directly approx-
imating the desired frequency response of the discrete-time system. Furthermore, most
techniques for approximating the magnitude response of an FIR system assume a linear
phase constraint, thereby avoiding the problem of spectrum factorization that compli-
cates the direct design of IIR filters.

The simplest method of FIR filter design is called the window method. This method
generally begins with an ideal desired frequency response that can be represented as

Hy(e!®) = i ha[n]e= 7", (7.40)
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where hy4[n] is the corresponding impulse response sequence, which can be expressed
in terms of H,(e’®) as

haln] = % / Ha(e!™)e/ " de. (7.41)

Many idealized systems are defined by piecewise-constant or piecewise-functional fre-
quency responses with discontinuities at the boundaries between bands. As a result,
these systems have impulse responses that are noncausal and infinitely long. The most
straightforward approach to obtaining a causal FIR approximation to such systems is to
truncate the ideal response. Equation (7.40) can be thought of as a Fourier series repre-
sentation of the periodic frequency response Hy(e/®), with the sequence h4[n] playing
the role of the Fourier coefficients. Thus, the approximation of an ideal filter by trunca-
tion of the ideal impulse response is identical to the issue of the convergence of Fourier
series, a subject that has received a great deal of study. A particularly important concept
from this theory is the Gibbs phenomenon, which was discussed in Example 2.22. In
the following discussion, we will see how this nonuniform convergence phenomenon
manifests itself in the design of FIR filters.

The simplest way to obtain a causal FIR filter from h,4[n] is to define a new system
with impulse response h[n] given by’

hn] = {hd[n], O0<n< M,

] (7.42)
0, otherwise.

More generally, we can represent h[n] as the product of the desired impulse response
and a finite-duration “window” w[n]; i.e.,

hln] = hy[n]w[n], (7.43)
where, for simple truncation as in Eq. (7.42), the window is the rectangular window
1, 0sn=<M,
= T 7.44
win) { 0, otherwise. ( )

It follows from the modulation, or windowing, theorem (Section 2.9.7) that
. 1 n . .
H(e/?) = 5 / Hi(e’YW(e/“~)dg. (7.45)

That is, H(e/*) is the periodic convolution of the desired ideal frequency response
with the Fourier transform of the window. Thus, the frequency response H(e/®) will
be a “smeared” version of the desired response Hy(e/*). Figure 7.19(a) depicts typical
functions H;(e/?) and W(e/(“~%)), as required in Eq. (7.45).

If w[n] = 1 for all n (i.e., if we do not truncate at all), W(e’®) is a periodic impulse
train with period 27, and therefore, H(e/*) = Hy(e/®). This interpretation suggests

SThe notation for FIR systems was established in Chapter 5. That is, M is the order of the system
function polynomial. Thus, (M + 1) is the length, or duration, of the impulse response. Often in the literature,
N is used for the length of the impulse response of an FIR filter; however, we have used N to denote the
order of the denominator polynomial in the system function of an IIR filter. Thus, to avoid confusion and
maintain consistency throughout this book, we will always consider the length of the impulse response of an
FIR filter to be (M + 1).
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Figure 7.19 (a) Convolution process implied by truncation of the ideal impulse
response. (b) Typical approximation resulting from windowing the ideal impulse
response.

that if w[#n] is chosen so that W(e/®) is concentrated in a narrow band of frequencies
around o = 0, then H(e/?) will “look like” Hy(e/*), except where H;(e’/®) changes very
abruptly. Consequently, the choice of window is governed by the desire to have w[n]
as short as possible in duration, so as to minimize computation in the implementation
of the filter, while having W(e/®) approximate an impulse; that is, we want W(e’/®) to
be highly concentrated in frequency so that the convolution of Eq. (7.45) faithfully
reproduces the desired frequency response. These are conflicting requirements, as can
be seen in the case of the rectangular window of Eq. (7.44), where

M —Jo(M+1 .
W(el®) = Ze—jwn _ 1—e™/ (. ) _ e—jwM/281n[w.(M+ 1)/2]
1—e/e sin(w/2)

n=0

(7.46)

The magnitude of the function sin[w(M + 1)/2]sin(w/2) is plotted in Figure 7.20 for
the case M = 7. Note that W(e’®) for the rectangular window has a generalized linear
phase. As M increases, the width of the “main lobe” decreases. The main lobe is usually
defined as the region between the first zero-crossings on either side of the origin. For
the rectangular window, the width of the main lobe is A, = 47 /(M + 1). However,
for the rectangular window, the side lobes are large, and in fact, as M increases, the
peak amplitudes of the main lobe and the side lobes grow in a manner such that the
area under each lobe is a constant while the width of each lobe decreases with M.
Consequently, as W(e/(“~9)) “slides by” a discontinuity of H(e/?) with increasing w,
the integral of W(e/(“~®))H  (e/®) will oscillate as each side lobe of W(e/(*~)) moves
past the discontinuity. This result is depicted in Figure 7.19 (b). Since the area under
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sin (w(M + 1)/2)
sin (w/2)

(M=17)
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Peak sidelobe

27 2w T 27 @
(M+1) ~ (M+1) Figure 7.20 Magnitude of the Fourier
—| Aw, |*+— Mainlobe transform of a rectangular window
width (M=T7).

each lobe remains constant with increasing M, the oscillations occur more rapidly, but
do not decrease in amplitude as M increases.

In the theory of Fourier series, it is well known that this nonuniform convergence,
the Gibbs phenomenon, can be moderated through the use of a less abrupt truncation
of the Fourier series. By tapering the window smoothly to zero at each end, the height
of the side lobes can be diminished; however, this is achieved at the expense of a wider
main lobe and thus a wider transition at the discontinuity.

7.2.1 Properties of Commonly Used Windows

Some commonly used windows are shown in Figure 7.21.° These windows are defined
by the following equations:

Rectangular
1, 0<n<M,
= - 7.47
win] {O, otherwise ( a)
Bartlett (triangular}
2n/M, 0<n< M/2,
wlnl=<2-2n/M, M/2<n<M, (7.47b)
0, otherwise
Hanning
0.5-0.5 2 , 0=n=< M,
wln] = cos2rn/M). 0=n " (7.47¢)
0, otherwise
Hamming
0.54 — 0.46 2 , 0<n=<M,
wln] = cos(2mn/M), 0= n " (7.47d)
0, otherwise

6The Bartlett, Hanning, Hamming, and Blackman windows are all named after their originators. The
Hanning window is associated with Julius von Hann, an Austrian meteorologist, and is sometimes referred to
as the Hann window. The term “hanning” was used by Blackman and Tukey {1958) to describe the operation
of applying this window to a signal and has since become the most widely used name for the window, with
varying preferences for the choice of “Hanning” or “hanning.”
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Figure 7.21 Commonly used windows.
Blackman
0.42 - 0.5cos(2nn + 0.08 cos(4nn , 0<n< M,
wli] = Q2nn/ M) (4nn/ M) ‘ (147)
0, otherwise

(For convenience, Figure 7.21 shows these windows plotted as functions of a con-
tinuous variable; however, as specified in Egs. (7.47), the window sequence is defined
only at integer values of n.)

As will be discussed in Chapter 10, the windows defined in Egs. (7.47) are com-
monly used for spectrum analysis as well as for FIR filter design. They have the desirable
property that their Fourier transforms are concentrated around = 0, and they have a
simple functional form that allows them to be computed easily. The Fourier transform of
the Bartlett window can be expressed as a product of Fourier transforms of rectangular
windows, and the Fourier transforms of the other windows can be expressed as sums of
frequency-shifted Fourier transforms of the rectangular window, as given by Eq. (7.46).
(See Problem 7.34.)

The function 20log,, | W(e’?)| is plotted in Figure 7.22 for each of these windows
with M = 50. The rectangular window clearly has the narrowest main lobe, and thus,
for a given length, it should yield the sharpest transitions of H(e/“) at a discontinuity
of Hy(e/). However, the first side lobe is only about 13 dB below the main peak,
resulting in oscillations of H(e/“) of considerable size around discontinuities of Hy(e/®).
Table 7.1, which compares the windows of Egs. (7.47), shows that, by tapering the
window smoothly to zero, as with the Hamming, Hanning, and Blackman windows, the
side lobes (second column) are greatly reduced in amplitude; however, the price paid
is a much wider main lobe (third column) and thus wider transitions at discontinuities
of H,(e/*). The other columns of Table 7.1 will be discussed later.

7.2.2 Incorporation of Generalized Linear Phase

In designing many types of FIR filters, it is desirable to obtain causal systems with a
generalized linear phase response. All the windows of Eqs. (7.47) have been defined in



20 logyq IW(e/*)l

20 10810 |W(ef"')|

20 log IW(e/®)l

20 logy IW (e/)l

| l | ]

027 047 0.6 0.8
Radian frequency (w)

(a)

0
o
I

!
&
[e]

|

I
3
[

1
&
I

N
&

1 [

[=-]

0.2 0.4 0.6 0.87
Radian frequency (w)

(b)

027 0.4 0.6 0.8
Radian frequency (w)

(©)

-80—

I l l |

-100
0

470

02n 04w 0.67 087
Radian frequency (w)

(d)

Figure 7.22 Fourier transforms (log
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TABLE7.1 COMPARISON OF COMMONLY USED WINDOWS

Peak Transition

Peak Approximation  Equivalent Width

Side-Lobe  Approximate Error, Kaiser of Equivalent

Type of Amplitude Width of 20logp & Window, Kaiser
Window (Relative) Main Lobe (dB) B Window
Rectangular —13 4rn/(M+1) —21 0 18tn/M
Bartlett -25 8a/M -25 133 23a/M
Hanning -31 8m/M —44 3.86 5.01a/M
Hamming —41 8n/M —53 4.86 627x/M
Blackman —57 12a/M —74 7.04 9.197/M

anticipation of this need. Specifically, note that all the windows have the property that
win] = wlM—n], 0<n<M,
10, otherwise;
i.e., they are symmetric about the point M/2. As a result, their Fourier transforms are
of the form

(7.48)

W(el”) = We(e!“)e /oM, (7.49)
where W,(e/®) is a real, even function of w. This is illustrated by Eq. (7.46). The conven-
tion of Eq. (7.48) leads to causal filters in general, and if the desired impulse response
is also symmetric about M/2, i.e., if hy[M — n] = h4[n], then the windowed impulse
response will also have that symmetry, and the resulting frequency response will have
a generalized linear phase; that is,

H(e'”) = A (e/®)e 1oM/2, (7.50)
where A.(e/) is real and is an even function of w. Similarly, if the desired impulse
response is antisymmetric about M/2, i.e., if hy|M — n] = —hy[n], then the windowed

impulse response will also be antisymmetric about M/2, and the resulting frequency
response will have a generalized linear phase with a constant phase shift of ninety
degrees; i.e.,

H(e/?) = jA,(e/*)e /M2, (7.51)
where A,(e’) is real and is an odd function of w.
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Although the preceding statements are straightforward if we consider the prod-
uct of the symmetric window with the symmetric (or antisymmetric) desired impulse
response, it is useful to consider the frequency-domain representation. Suppose
hi(M — n] = hy[n] . Then

Hy(e'®) = H,(e/®)e 1*M/2 (7.52)

where H,(e/®) is real and even.
If the window is symmetric, we can substitute Eqs. (7.49) and (7.52) into Eq. (7.45)
to obtain

. 1 T . . . .
H(e') = >— f H,(e!)e 1PMP W, (e/(~0))g=I(=0OWMI24p, (7.53)
nJ-n
A simple manipulation of the phase factors leads to
H(e/®) = A (e/*)e/oM/2 (7.54)
where . 1 = ' '
Ade) = o= / H.(e/®)W,(e/@)dg. (7.55)

Thus, we see that the resulting system has a generalized linear phase and, moreover,
the real function A.(e’®) is the result of the periodic convolution of the real functions
H.(e’*) and W,(e/¥).

The detailed behavior of the convolution of Eq. (7.55) determines the magnitude
response of the filter that results from windowing. The following example illustrates
this for a linear-phase lowpass filter.

Example 7.7 Linear-Phase Lowpass Fliter
The desired'frequency response is defined as

. —joM/[2
joy _ ) € » ol < o,
Hip(e™) = {0, we <lo| <, (7.56)

where the generalized linear phase factor has been incorporated into the definition of
the ideal lowpass filter. The corresponding ideal impulse response is

hipln] = % ] " M gion gg Sini‘:;('i;l%/f)] (7.57)

—w¢

for —co < n < o0. Itis easily shown that k[ M — n] = hyp[n], so if we use a symmetric

window in the equation

h[n] = sin[w:(n — M/2)]
n(n— M/2)

w(n], (7.58)

then a linear-phase system will result.

The upper part of Figure 7.23 depicts the character of the amplitude response
that would result for all the windows of Egs. (7.47), except the Bartlett window, which is
rarely used for filter design. (The Bartlett window would produce a monotonic function
A.(e/?), because W,(e/) is a positive function.) The figure displays the important
properties of window method approximations to desired frequency responses that
have step discontinuities. It applies accurately when w, is not close to zero or to w
and when the width of the main lobe is smaller than 2w.. At the bottom of the figure
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is a typical Fourier transform for a symmetric window (except for the linear phase).
This function should be visualized in different positions as an aid in understanding the
shape of the approximation A.(e/*) in the vicinity of w,.

When @ = w,, the symmetric function W,(e/(“~9)) is centered on the disconti-
nuity, and about one-half its area contributes to A.(e/*). Similarly, we can see that the
peak overshoot occurs when W, (e/(“~9)) is shifted such that the first negative side lobe
on the right is just to the right of .. Similarly, the peak negative undershoot occurs
when the first negative side lobe on the left is just to the left of w,. This means that the
distance between the peak ripples on either side of the discontinuity is approximately
the main-lobe width Aw,,, as shown in Figure 7.23. The transition width Aw as defined
in the figure is therefore somewhat less than the main-lobe width. Finally, due to the
symmetry of W,(e/{(“~9)), the approximation tends to be symmetric around w; i.e.,
the approximation overshoots by an amount § in the passband and undershoots by the
same amount in the stopband.

W, (el =)

N\ | N~
N\ w NS T e

Figure 7.23 lllustration of type of approximation obtained at a discontinuity of
the ideal frequency response.

The fourth column of Table 7.1 shows the peak approximation error (in dB) for
the windows of Egs. (7.47). Clearly, the windows with the smaller side lobes yield bet-
ter approximations of the ideal response at a discontinuity . Also, the third column,
which shows the width of the main lobe, suggests that narrower transition regions can
be achieved by increasing M. Thus, through the choice of the shape and duration of
the window, we can control the properties of the resulting FIR filter. However, trying
different windows and adjusting lengths by trial and error is not a very satisfactory way
to design filters. Fortunately, a simple formalization of the window method has been
developed by Kaiser (1974).



