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time-dependent Fourier transform might correspond to reflections from a fin on the
rocket that is alternately moving toward and then away from the antenna because of
the spinning of the rocket. Figure 10.19(b) shows an estimate of the Doppler frequency
as a function of time. This estimate was obtained simply by locating the highest peak
in each DFT.
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Figure 10.19 llustration of time-dependent Fourier analysis of Doppler radar
signal. (a) Sequence of Fourier transforms of Doppler radar signal. {(b) Doppler
frequency estimated by picking the largest peak in the time-dependent Fourier
transform.

10.6 FOURIER ANALYSIS OF STATIONARY RANDOM
SIGNALS: THE PERIODOGRAM

In the previous sections, we discussed and illustrated Fourier analysis for sinusoidal
signals with stationary (non-time-varying) parameters and for nonstationary signals
such as speech and radar. In cases where the signal can be modeled by a sum of sinusoids
or a linear system excited by a periodic pulse train, the Fourier transforms of finite-length
segments of the signal have a convenient and natural interpretation in terms of Fourier
transforms, windowing, and linear system theory. However, more noiselike signals, such
as the example of unvoiced speech in Section 10.5.1, are best modeled as random signals.

As we discussed in Section 2.10 and as shown in Appendix A, random processes
are often used to model signals when the process that generates the signal is too complex
for areasonable deterministic model. Typically, when the input to a linear time-invariant
system is modeled as a stationary random process, many of the essential characteristics
of the input and output are adequately represented by averages, such as the mean
value (dc level), variance (average power), autocorrelation function, or power density
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spectrum. Consequently, it is of particular interest to estimate these for a given signal.
Asdiscussed in Appendix A, a typical estimate of the mean value of a stationary random
process from a finite-length segment of data is the sample mean, defined as

m:%Zq@ (10.48)

I.—1
ﬁ=%2um—mﬂ (10.49)

The sample mean and the sample variance, which are themselves random variables, are
unbiased and asymptotically unbiased estimators, respectively: L.e., the expected value
of i1, is the true mean m1, and the expected value of 42 approaches the true variance o
as L approaches oo. Furthermore, they are both consistent estimators; i.e.. they improve
with increasing L, since their variances approach zero as L approaches oc.

In the remainder of this chapter, we study the estimation of the power spectrum” of
arandomsignal using the DFT. As we will see. there are two basic approaches to estimat-
ing the power spectrum. One approach. which we develop in this section, is referred to as
periodogram analysis and is based on direct Fourier transformation of finite-length seg-
ments of the signal. The second approach. developed in Section 10.7, is to first estimate
the autocovariance sequence and then compute the Fourier transform of this estimate.
In either case, we are typically interested in obtaining unbiased consistent estimators.
Unfortunately, the analysis of such estimators is very difficult. and generally, only ap-
proximate analyses can be accomplished. Even approximate analyses are beyond the
scope of this text, and we refer to the results of such analyses only in a qualitative way. De-
tailed discussions are given in Blackman and Tukey (1958). Hannan (1960), Jenkins and
Watts (1968), Koopmans (1995), Kay and Marple (1981), Marple (1987), and Kay (1988).

10.6.1 The Periodogram

Let us consider the problem of estimating the power density spectrum P;(2) of a
continuous-time signal s.(¢). An intuitive approach to the estimation of the power
spectrum is suggested by Figure 10.1 and the associated discussion in Section 10.1; based
on that approach, we now assume that the input signal s.(z) is a stationary random
signal. The antialiasing lowpass filter creates a new stationary random signal whose
power spectrum is bandlimited, so that the signal can be sampled without aliasing. Then
x[n] is a stationary discrete-time random signal whose power density spectrum P {w)
is proportional to Pi(2) over the bandwidth of the antialiasing filter; i.e.,

1 1)
Palw)= 2P (2). ol <m, (10.50)

where we have assumed that the cutoff frequency of the antialiasing filter is =/ 7T
and that 7 is the sampling period. (See Problem 10.33 for a further consideration of

>The term power spectrunt is commonly used interchangeably with the more precise term power density
spectrum.
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sampling of random signals.) Consequently, a reasonable estimate of P, (w) will provide
a reasonable estimate of P,;($2). The window w|[n] in Figure 10.1 selects a finite-length
segment ( L samples) of x[n], which we denote v[n], the Fourier transform of which is

Viel*) = wln]x[n]e= /" (10.51)

I~

3
Il
=

Consider as an estimate of the power spectrum the quantity
1 .
I(w) = L—U|V(ef“’)|2, (10.52)

where the constant U anticipates a need for normalization to remove bias in the spectral
estimate. When the window w[n] 1s the rectangular window sequence, this estimator for
the power spectrum is called the periodogram. If the window is not rectangular, /(w)
1s called the modified periodogram. Clearly, the periodogram has some of the basic
properties of the power spectrum. It is nonnegative, and for real signals, it is a real and
even function of frequency. Furthermore, it can be shown (Problem 10.26) that

1 A .
H{w) =+ Cyum]e e, (10.53)
o, 2
where
L1
colm] =) x[n]w[n)x[n + mlw[n + m]. (10.54)
n=0

We note that the sequence c,,[m] is the aperiodic correlation sequence for the finite-
length sequence v[n] = w[n]x[n]. Consequently, the periodogram is in fact the Fourier
transform of the aperiodic correlation of the windowed data sequence.

Explicit computation of the periodogram can be carried out only at discrete fre-
quencies. From Eqgs. (10.51) and (10.52), we see that if the discrete-time Fourier trans-
form of w[n]x[n] is replaced by its DFT, we will obtain samples at the DFT frequencies
wr =2nk/Nfork=0,1,..., N—1.Specifically, samples of the periodogram are given
by

Iwn) = S oI VIKIE, (10.55)

where V[k] is the N-point DFT of w[n]x[n]. If we want to choose N to be greater
than the window length L, appropriate zero-padding would be applied to the sequence
w(n]x[n].

If a random signal has a nonzero mean, its power spectrum has an impulse at
zero frequency. If the mean is relatively large, this component will dominate the spec-
trum estimate, causing low-amplitude, low-frequency components to be obscured by
leakage. Therefore, in practice the mean is often estimated using Eq. (10.48), and the
resulting estimate is subtracted from the random signal before computing the power
spectrum estimate. Although the sample mean is only an approximate estimate of the
zero-frequency component, subtracting it from the signal often leads to better estimates
at neighboring frequencies.
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10.6.2 Properties of the Periodogram

The nature of the periodogram estimate of the power spectrum can be determined by
recognizing that, for each value of w. I(w) is a random variable. By computing the mean
and variance of /{w), we can determine whether the estimate is biased and whether it
is consistent.

From Eq. (10.53), the expected value of I(w) is

{.—1

S Elew]mlerom, (10.56)

m=—(1.-1)

Ell =

{I(w)} U

The expected value of ¢, [m] can be expressed as
L1

E{cu[m]) = Z Elx[n)w[n]x[n + mlw[n + m])}

= (10.57)
= Z wlnlw[n + m|E{x[n]x[n + m]}.
n=(0
Since we are assuming that x[#n] is stationary,
E{x[n)x[n + m]} = ¢ [m)]. (10.58)
and Eq. (10.57) can then be rewritten as
Elcw[m]} = cyp[M) ey [m]. (10.59)
where ¢, [m] is the aperiodic autocorrelation of the window, i.e..
L1
Cww|m] = Z wln]wln + m]. (10.60)

n=0

From Eq. (10.56), Eq. (10.59), and the modulation-windowing property of Fourier
transforms (Section 2.9.7), it follows that

f  Po(O)Conle M )db, (10.61)

-0

El(w)} =

2x LU

where C,,, (e/®) is the Fourier transform of the aperiodic autocorrelation of the window,
1e.,

Cine (e/?) = |W(e/®)|%. (10.62)

According to Eq. (10.61), the (modified) periodogram is a biased estimate of the
power spectrum, since £{/(w)} is not equal to P, (w). Indeed, we see that the bias arises
as a result of convolution of the true power spectrum with the Fourier transform of
the aperiodic autocorrelation of the data window. If we increase the window length, we
expect that W(e/®) should become more concentrated around w = 0, and thus C,,.,, (¢/®)
should look increasingly like a periodic impulse train. If the scale factor 1/(LU) is
correctly chosen, then £{/(w)} should approach P () as W(e/®) approaches a periodic
impulse train. The scale can be adjusted by choosing the normalizing constant U so that

1

1 T ) L—-1
fw _ 2
272 LU /_n W(el”)fdo = 7 3 _(wln])* =1. (10.63)

n=0
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or

1 L—1 ,
U=+ > (wlnl). (10.64)

n={0

For the rectangular window, we would then choose U = 1, while other data windows
would require a value of 0 < U < 1 if w[n] is normalized to a maximum value of 1.
Alternatively, the normalization can be absorbed into the amplitude of w[r]. Therefore,
if properly normalized, the (modified) periodogram is asymptotically unbiased; i.e., the
bias approaches zero as the window length increases.

To examine whether the periodogram is a consistent estimate or becomes a consis-
tent estimate as the window length increases, it is necessary to consider the behavior of
the variance of the periodogram. An expression for the variance of the periodogram is
very difficult to obtain even in the simplest cases. However. it has been shown (see Jenk-
ins and Watts, 1968) that over a wide range of conditions, as the window length increases,

var[l(w)] =~ P2 (). (10.65)

That is, the variance of the periodogram estimate is approximately the same size as the
square of the power spectrum that we are estimating. Therefore, since the variance does
not asymptotically approach zero with increasing window length, the periodogram is
not a consistent estimate.

The properties of the periodogram estimate of the power spectrum just discussed
are illustrated in Figure 10.20, which shows periodogram estimates of white noise us-
ing rectangular windows of lengths L. = 16,64, 256, and 1024. The sequence x|[n]
was obtained from a pseudorandom-number generator whose output was scaled so
that |x[n]| < +/3. A good random-number generator produces a uniform distribution
of amplitudes, and the sample-to-sample correlation is small. Thus, the power spec-
trum of the output of the random-number generator could be modeled in this case by
P (w) = af = 1 for all w. For each of the four rectangular windows, the periodogram
was computed with normalizing constant U = 1 and at frequencies w; = 27k/N for

/\ ] I ]

128 256 384 s12  Figure 10.20 Pertodograms of
Sample number (k) pseudorandom white-noise sequence.
@ (a) Window length L = 16 and DFT
length N = 1024.
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Figure 10.20 (continued) (b) L = 64
and N = 1024. (c) L = 256 and

N =1024. (d) L = 1024 and

N = 1024,
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N = 1024 using the DFT. That is,

L1 2

I[k] = I{axy) = %lv[k]l2 = %‘ Zw[n]x[n]e_”z”/m"’” . (10.66)
n=0

In Figure 10.20, the DFT values are connected by straight lines for purposes of display.
Recall that /(w) is real and an even function of  so we only need to plot /[k] for
0 < k < N/2 corresponding to () < w < 7. We note that the spectral estimate fluctuates
more rapidly as the window length L increases. This behavior can be understood by re-
calling that, although we view the periodogram method as a direct computation of the
spectral estimate, we have seen that the underlying correlation estimate of Eq. (10.54)
18, in effect. Fourier transformed to obtain the periodogram. Figure 10.21 illustrates a
windowed sequence, x[n]w[n]. and a shifted version, x[n + m]w[n + m], as required
in Eq. (10.54). From this figure, we see that L — m — 1 signal values are involved in
computing a particular correlation lag value c¢,,[m]. Thus, when nt is close to L, only
a few values of x[n] are involved in the computation, and we expect that the estimate
of the correlation sequence will be considerably more inaccurate for these values of
m and consequently will also show considerable variation between adjacent values of
m. On the other hand, when m is small, many more samples are involved, and the
variability of ¢,,[m] with m should not be as great. The variability at large values of
m manifests itself in the Fourier transform as fluctuations at all frequencies, and thus,
for large L. the periodogram estimate tends to vary rapidly with frequency. Indeed, it
can be shown (see Jenkins and Watts, 1968) that if N = L. the periodogram estimates
at the DFT frequencies 27k/ N become uncorrelated. Since, as N increases, the DFT
frequencies get closer together, this behavior is inconsistent with our goal of obtaining
a good estimate of the power spectrum. We would prefer to obtain a smooth spectrum

x{n] win]

(a)

x[n+m]wln +m]

Figure 10.21 lllustration of sequences
-1 involved in Eq. (10.54). (a) A
finite-length sequence. (b) Shifted
sequence for m > 0.

L-m-1
(b)
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estimate without random variations resulting from the estimation process. This can be
accomplished by averaging multiple independent periodogram estimates to reduce the
fluctuations.

10.6.3 Periodogram Averaging

The averaging of periodograms in spectrum estimation was first studied extensively by
Bartlett (1953); later, after fast algorithms for computing the DFT were developed,
Welch (1970) combined these computational algorithms with the use of a data window
w(n] to develop the method of averaging modified periodograms. In periodogram aver-
aging, a data sequence x[n],0 < n < Q—1,isdivided into segments of length- L samples,
with a window of length L applied to each; 1.e., we form the segments

x,[n} = x(r R+ nlw{n], O<n<L-1 (10.67)

If R < Lthe segments overlap, and for R = L the segments are contiguous. Note that Q
denotes the length of the available data. The total number of segments depends on the
values of, and relationship among, R, L, and Q. Specifically, there will be K full-length
segments, where K is the largest integer for which (K — 1)R+ (L — 1) < Q — 1. The
periodogram of the rth segment is

I () = 751X ). (10.68)

where X, (e/*) is the discrete-time Fourier transform of x, [n]. Each I, (w) has the prop-
erties of a periodogram, as described previously. Periodogram averaging consists of
averaging together the K periodogram estimates /, (w); 1.e., we form the time-averaged
periodogram defined as

i 1 X

I(w) = % Z L (w). (10.69)

r=0

To examine the bias and variance of (), let us take L = R, so that the segments
do not overlap, and assume that ¢,,[m] is small for m > L;ie., signal samples more
than L apart are approximately uncorrelated. Then it is reasonable to assume that
the periodograms [, (w) will be identically distributed independent random variables.
Under this assumption, the expected value of /(w) is

K-1
Elf@) = 2 Y EL @), (10.70)
r=0

or, since we assume that the periodograms are independent and i1dentically distributed,
Ell (@)} = E{ ()} for any r. (10.71)
From Eq. (10.61), it follows that

Ell(w)} = E{I ()} = 2n1LU /” Pee(8)Ch (e~ dB, (10.72)

where L is the window length. When the window w(n] is the rectangular window, the
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method of averaging periodograms is called Bartlett’s procedure, and in this case it can
be shown that

_JL—im|, Iml =(L-1),
Cuowlm] = {O otherwise, (10.73)
and, therefore,
. sin(wl/2)\?
Cowle) = ——F=-) . 10.74
(") (Sln(w/2)> ( )

That is, the expected value of the average periodogram spectrum estimate is the convo-
lution of the true power spectrum with the Fourier transform of the triangular sequence
cww[n] that results as the autocorrelation of the rectangular window. Thus, the average
periodogram is also a biased estimate of the power spectrum.

To examine the variance, we use the fact that, in general, the variance of the aver-
age of K independent identically distributed random variables is 1/ K times the variance
of each individual random variable. (See Papoulis, 1991.) Therefore, the variance of the
average periodogram is

- 1
var[/(w)] = Evar[[,(w)], (10.75)
or, with Eq. (10.65), it follows that
- 1
var[l(w)] = % P’ (w). (10.76)

Consequently, the variance of I(w) is inversely proportional to the number of peri-
odograms averaged, and as K increases, the variance approaches zero.

From Eq. (10.74), we see thatas L, the length of the segment x,[n], increases,
the main lobe of C,, (e/”) decreases in width, and consequently, from Eq. (10.72),
E{I(w)} more closely approximates P..(w). However, for fixed total data length Q,
the total number of segments (assuming that L. = R) is O/ L; therefore, as L increases,
K decreases. Correspondingly, from Eq. (10.76), the variance of /() will increase. Thus,
as is typical in statistical estimation problems, for a fixed data length there is a trade-off
between bias and variance. However, as the data length Q increases, both L and K
can be allowed to increase, so that as Q approaches oo, the bias and variance of I(w)
can approach zero. Consequently, periodogram averaging provides an asymptotically
unbiased, consistent estimate of P, (w).

The preceding discussion assumed that nonoverlapping rectangular windows were
used in computing the time-dependent periodograms. Welch (1970) showed that if a
different window shape is used, the variance of the average periodogram still behaves
as in Eq. (10.76). Welch also considered the case of overlapping windows and showed
that if the overlap is one-half the window length, the variance is further reduced by
almost a factor of 2, due to the doubling of the number of sections. Greater overlap
does not continue to reduce the variance, because the segments become less and less
independent as the overlap increases.
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10.6.4 Computation of Average Periodograms Using
the DFT

As with the periodogram, the average periodogram can be explicitly evaluated only at
a discrete set of frequencies. Because of the availability of the fast Fourier transform
algorithms for computing the DFT, a particularly convenient and widely used choice is
the set of frequencies wy = 27k/ N for an appropriate choice of N. From Eq. (10.69), we
see that if the DFT of x,[n] is substituted for the Fourier transform of x, [n] in Eq. (10.68),
we obtain samples of I(w) at the DFT frequencies wy; = 2rk/Nfork=0.1,..., N—1.
Specifically, with X, [k] denoting the DFT of x,[n],

LIk = I(ox) = flau(, [K]1%. (10.77a)
B B ) K-1
Ik} = Iwr) = & > LK. (10.77b)

r=0

We denote I,(27k/N) as the sequence /,[k] and I(27k/N) as the sequence I[k].
According to Egs. (10.77a) and (10.77b), the average periodogram estimate of the power
spectrum is computed at N equally spaced frequencies by averaging the DFTs of the
windowed data segments with the normalizing factor LU. This method of power spec-
trum estimation provides a very convenient framework within which to trade between
resolution and variance of the spectral estimate. It is particularly simple and efficient
to implement using the fast Fourier transform algorithms discussed in Chapter 9. An
important advantage of the method over those to be discussed in Section 10.7 is that
the spectrum estimate is always nonnegative.

10.6.5 An Example of Periodogram Analysis

Power spectrum analysis is a valuable tool for modeling signals, and it also can be used
to detect signals, particularly when it comes to finding hidden periodicities in sampled
signals. As an example of this type of application of the average periodogram method,
consider the sequence

x[n] = Acos(won + 0) + e[n], (10.78)

where ¢ is a random variable uniformly distributed between 0 and 27 and e[n] is a zero-
mean white-noise sequence that has a constant power spectrum; i.e., Po.(w) = o2 for all
w. In signal models of this form. the cosine is generally the desired component and e[n]
is an undesired noise component. Often, in practical signal detection problems we are
interested in the case for which the power in the cosine signal is small compared with
the noise power. It can be shown (see Problem 10.34) that over one period in frequency,
the power spectrum for this signal is
An 5

P (w) = —2—[5(w — wo) + 8{w + wo)] + o} for |w| < 7. (10.79)
From Egs. (10.72) and (10.79). it follows that the expected value of the average peri-
odogram is

2

- A ) )
EH(@)) = 757 [Cow(€ ™) + Cpr (/)] + 07 (10.80)
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| s 1 0
0 20 40 60 80 100 Figure 10.22 Cosine sequence with
Sample number (1) white noise, as in Eq. (10.78).

Figures 10.22 and 10.23 show the use of the averaging method for a signal of the form
of Eq. (10.78), with A= 0.5, wy = 27 /21, and random phase 0 < # < 2. The noise was
uniformly distributed in amplitude such that —+/3 < e[n] < +/3. Therefore, it is easily
shown that 6> = 1. The mean of the noise component is zero. Figure 10.22 shows 101
samples of the sequence x[n]. Since the noise component e[rn] has maximum amplitude
V3. the cosine component in the sequence x[n] is not visually apparent.

Figure 10.23 shows average periodogram estimates of the power spectrum for
rectangular windows with amplitude 1, so that U = 1, and of lengths L = 1024, 256, 64,
and 16, with the total record length Q = 1024 in all cases. Except for Figure 10.23(a),
the windows overlap by one-half the window length. Figure 10.23(a) is the periodogram
of the entire record. and Figures 10.23(b), (c), and (d) show the average periodogram
for K =7, 31, and 127 segments, respectively. In all cases, the average periodogram was
evaluated using 1024-point DFTs at frequencies wy = 27k/1024. (For window lengths
L < 1024, we must pad the windowed sequence with zero-samples before computing
the DFT.) Therefore, the frequency wg = 27 /21 lies between DFT frequencies wqg =
2748/1024 and wqg9 = 2w49/1024.

In using such estimates of the power spectrum to detect the presence and/or
the frequency of the cosine component, we might search for the highest peaks in the
spectral estimate and compare their size with that of the surrounding spectral values.
From Egs. (10.74) and (10.80), the expected value of the average periodogram at the
frequency wy is

2

E(Hwo)} = 145‘ +0.. (10.81)
Thus, if the peak due to the cosine component is to stand out against the variability of the
average periodogram, then in this special case we must choose L so that A2L/4 > o2.
This is illustrated by Figure 10.23(a), where Lis as large as it can be for the record length
Q. We see that L = 1024 gives a very narrow main lobe of the Fourier transform of
the autocorrelation of the rectangular window, so it would be possible to resolve very
closely spaced sinusoidal signals. Note that for the parameters of this example (A = (.5,
o2 = 1) and with L = 1024, the peak amplitude in the periodogram at frequency 27/21
is close, but not equal, to the expected value of 65. We also observe additional peaks
in the periodogram with amplitudes greater than 10. Clearly, if the cosine amplitude
A had been smaller by only a factor of 2, it is possible that its peak would have been
confused with the inherent variability of the periodogram.
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Figure 10.23 Example of average
periodogram for signal of length

Q = 1024. (a) Periodogram for window
length L = @ = 1024 (only one
segment). (b) K = 7 and L = 256
(overlap by L/2). (c) K =31 and

L = 64.
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Figure 10.23 (continued)
(d) (d) K =127 and L = 16.

We have seen that the only sure way to reduce the variance of the spectrum esti-
mate is to increase the record length of the signal. This is not always possible, and even
if it is possible, longer records require more processing. We can reduce the variability
of the estimate while keeping the record length constant if we use shorter windows
and average over more sections. The cost of doing this is illustrated by parts (b), (c),
and (d) of Figure 10.23. Note that as more sections are used, the variance of the spec-
tral estimate decreases, but in accordance with Eq. (10.81), so does the amplitude of
the peak due to the cosine. Thus, we again face a trade-off. That the shorter windows
reduce variability is clear, especially if we compare the high-frequency regions away
from the peak in parts (a), (b) and (c) of Figure 10.23. Recall that the idealized power
spectrum of the model for the pseudorandom-noise generator is a constant (62 = 1)
for all frequencies. In Figure 10.23(a) there are peaks as high as about 10 when the true
spectrum is 1. In Figure 10.23(b) the variation away from 1 is less than about 3, and in
Figure 10.23(c) the variation around 1 is less than .5. However, shorter windows also
reduce the peak amplitude of any narrowband component, and they also degrade our
ability to resolve closely spaced sinusoids. This reduction in peak amplitude is also clear
from Figure 10.23. Again, if we were to reduce A by a factor of 2 in Figure 10.23(b),
the peak height would be approximately 4, which is not much different from many of
the other peaks in the high-frequency region. In Figure 10.23(c) a reduction of Aby a
factor of 2 would make the peak approximately 1.25, which would be indistinguishable
from the other ripples in the estimate. In Figure 10.23(d) the window 1s very short,
and thus the fluctuations of the spectrum estimate are greatly reduced, but the spectral
peak due to the cosine is very broad and barely above the noise even for A = 5. If
the length were any smaller, spectral leakage from the negative-frequency component
would cause there to be no distinct peak in the low-frequency region.

This example confirms that the average periodogram provides a straightforward
method of trading off between spectral resolution and reduction of the variance of the
spectral estimate. Although the theme of the example was the detection of a sinusoid
in noise, the average periodogram could also be used in signal modeling. The spectral
estimates of Figure 10.23 clearly suggest a signal model of the form of Eq. (10.78), and
most of the parameters of the model could be estimated from the average periodogram
power spectrum estimate.



