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(x,y)-plane is scanned by a
line L moving in the
R-direction to generate a
projection.

\ % Fig.13.8 A density distribution in the

The factor 8(R — x cos 6 — y sin ) is zero everywhere except where its ar-
gument is zero, which is along the straight line x cos@ + y sin 8 = R (Fig. 13.8).
This straight line L represents the slit when it is at a perpendicular distance R
from the origin and inclined at an angle 8 to the y-axis. If 6 is kept fixed, say at a
value 6,, while R is varied, then the integral g, (R) constitutes the projection of the
density distribution f(x,y) onto the line # = 6, as a function of R. The resulting
profile is referred to as a single scan.

The practical computational method for inversion was arrived at by Fourier
transforming the Radon integral equation, finding a method of solution, and then
retransforming the steps to end up with data-plane operations in which numeri-
cal Fourier transformation is actually dispensed with. The technique, known as
modified back-projection (Bracewell and Riddle, 1967), was developed in con-
nection with radioastronomical imaging where a distributed source of radiation
is scanned by an antenna that receives from a narrow strip of sky whose orien-
tation 6 can be varied between scans.

The inversion procedure derives from a remarkable connection that exists be-
tween the Fourier, Abel, and Hankel transforms and from a generalization known
as the Projection-Slice Theorem.

The Abel-Fourier-Hankel ring of transforms. Starting with an even function
f(r), if we take the Abel transform, then take the Fourier transform, and finally
take the Hankel transform, we return to the original function f(r) as shown in
Bracewell (1956). For example, starting with f(r) = 8(r — a), which is a ring im-
pulse located on the circle r = a, we take the Abel transform (Table 13.9) to get
2a/\Va* — x’T1(x/2a), the Fourier transform of which is 27afy(27as) (Pictorial Dic-
tionary). From Table 13.2 we verify that the Hankel transform of the Bessel func-
tion is 8(r — a), the function we started with.

Projection-slice theorem. When a two-dimensional density distribution is a
function of radius alone, all three of the above transformations are one-dimen-
sional but f(r) can be generalized to become a function f(x,y) of both x and y and
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what was the Hankel transform above generalizes to a function F(u,v) of # and
v. These two two-dimensional functions constitute a two-dimensional Fourier
transform pair, as explained earlier in the chapter in connection with the Hankel
transformation. One way of thinking about Fourier transformation in two di-
mensions is to note that F(u,0), the slice through F(u,v) along the u-axis, is given
by putting v = 0 in the two-dimensional Fourier transform definition to get

F(u,0) = I :Ul f (X,y)dy:'e'ﬂﬂuxdx.

The item in square brackets is the projection of f(x,y) on the x-axis. The remain-
ing integral with respect to x simply transforms the projection. In consequence,
when f(x, y) is given, one slice through F(u,v), namely the one along the u-axis,
is obtainable by first projecting f(x,y) onto its x-axis and then taking a one-
dimensional Fourier transform. The Projection-Slice Theorem says that the slice
through F(u,v) at any angle 6, in the (u,v)-plane, i.e., along a line parallel to the
axis R in the (x,y)-plane, is obtainable as the Fourier transform of the projection
of f(x,y) onto the axis R in the (x,y)-plane (Bracewell, 1956).

Reconstruction by modified back projection. Now the process of tomogra-
phy is to project a certain f(x,y) at various angles 6, preferably numerous and eq-
uispaced; consequently those parts of the transform F(u,v) can be deduced that
lie on slices at corresponding angles. From knowledge of F(1,v) one can recover
f(xy) by two-dimensional Fourier transformation; but to do this one must first
interpolate onto a square grid in the (#,v)-plane in order to be able to utilize avail-
able algorithms. Such numerical interpolation proves to take more time than the
transformation. To avoid interpolation we note that in the (x,v)-plane, the data
points resulting from the various one-dimensional transformations lie on diverg-
ing spokes 6 = const. The density of points is thus inversely proportional to ra-
dius, a nonuniformity that can be corrected for by multiplication by the absolute
value of radius in the (1,v)-plane. Let M be a spatial frequency in the (u,v)-plane

beyond which no content is expected, and let § = Vu? + v% Then the correction
factor is Il(g/2M) — A(g/M). After such correction a two-dimensional Fourier
transform would deliver the desired f(x,y).

But the multiplicative correction to values along the slice in the (1,v)-plane
corresponds to a rather simple convolution operation on the original projections
8¢(R) in the data domain, an operation that produces a modified scan

26(R) = g4(R) * (2M sinc 2M R — M sinc> M R).

Thus the inversion procedure for the Radon transform is (a) to modify each mea-
sured scan by simple convolution to get $,(R), (b) to back-project, and (c) to ac-
cumulate the separate back projections over the (x,y)-plane. Back projection is to
distribute the modified scan g, (R) uniformly over the (x,y)-plane in the direction
perpendicular to the R-axis. For more details see Bracewell (1995) and Deans
(1983).



