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be interpolated by the ideal D/C converter for both the input and the output sequence.
Note in Figure 4.19(b) that the six-point moving-average filtering gives a sampled
cosine signal such that the sample points have been shifted by 2.5 samples with respect
to the sample points of the input. This can be seen from Figure 4.19(b) by comparing
the positive peak at 10 in the interpolated cosine for the input to the positive peak
at 12.5 in the interpolated cosine for the output. Thus. the six-point moving-average
filter is seen to have a delay of 5/2 = 2.5 samples.

4.6 CHANGING THE SAMPLING RATE USING
DISCRETE-TIME PROCESSING

We have seen that a continuous-time signal x.(¢) can be represented by a discrete-time
signal consisting of a sequence of samples

x[n] = x.(nT). (4.69)

Alternatively. our previous discussion has shown that, even if x[n] was not obtained
originally by sampling, we can always use the bandlimited interpolation formula of
Eq. (4.25) to find a continuous-time bandlimited signal x, (¢) whose samples are x[n] =
x(nT).

It is often necessary to change the sampling rate of a discrete-time signal, i.e.. to
obtain a new discrete-time representation of the underlying continuous-time signal of
the form

X'[n] = x(nT"). (4.70)

where T" # T. One approach to obtaining the sequences x'[#] from x[n] is to recon-
struct x.(r) from x[n] using Eq. (4.25) and then resample x.(r) with period 7' to obtain
x’[n]. Often, however, this is not a desirable approach, because of the nonideal analog
reconstruction filter, D/A converter, and A/D converter that would be used in a practi-
cal implementation. Thus, it is of interest to consider methods of changing the sampling
rate that involve only discrete-time operations.

4.6.1 Sampling Rate Reduction by an Integer Factor

The sampling rate of a sequence can be reduced by “sampling™ it i.e., by defining a new
sequence

x4[n] = x[nM] = x.(nMT). (4.71)

Equation (4.71) defines the system depicted in Figure 4.20, which is called a sampling rate
compressor (see Crochiere and Rabiner, 1983) or simply a compressor. From Eq. (4.71),
it is clear that x,[n] is identical to the sequence that would be obtained from x.(r) by

Ml
x[n] xyln] = x[nM]

Sampling Sampling Figure 4.20 Representation of a
period T period 7"=MT  compressor or discrete-time sampler.
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sampling with period T = MT. Furthermore, if X.(jQ) = 0 for || = Qu, then x4[n]
is an exact representation of x.(¢) if n/T' = n/(MT) > Qu. That is, the sampling rate
can be reduced by a factor of M without aliasing if the original sampling rate was at least
M times the Nyquist rate or if the bandwidth of the sequence is first reduced by a factor
of M by discrete-time filtering. In general, the operation of reducing the sampling rate
(including any prefiltering) will be called downsampling.

As in the case of sampling a continuous-time signal, it is useful to obtain a
frequency-domain relation between the input and output of the compressor. This time,
however, it will be a relationship between discrete-time Fourier transforms. Although
several methods can be used to derive the desired result, we will base our derivation on
the results already obtained for sampling continuous-time signals. First recall that the
discrete-time Fourier transform of x[n] = x.(nT) is

X (/) = % f: X, (j (% — #)) . (4.72)
k=—o0

Similarly, the discrete-time Fourier transform of x4[n] = x[nM] = x.(nT") with T’ =
MTis

Xule?) = . S x, (;‘ (% - 2;,’)) . (473)

r=—oc
Now, since T' = MT, we can write Eq. (4.73) as

. 1 i w 2mr
X (el = X (i Y 474
ale’) = 37 | (’ (MT MT)) (4.74)

F=-—2c

To see the relationship between Egs. (4.74) and (4.72), note that the summation index »
in Eq. (4.74) can be expressed as

r=i+kM, (4.75)

where k and i are integers such that —oo < k < oo and 0 <i < M — 1. Clearly, r is still
an integer ranging from —oo to oo, but now Eq. (4.74) can be expressed as

M—1 oC .
X = 23 H > X (i (G- - i;}m S @e)

i=0 k=—

The term inside the square brackets in Eq. (4.76) is recognized from Eq. (4.72) as

. . 1 & —2mi 2wk
Xy~ LSy, (j (‘“ T n )) (4.77)

MT T

k=—0ocC
Thus, we can express Eq. (4.76) as

' 1 M—1 . A
Xd(e.l(u) — A_/[ Z X(el((u/M—Zm/M))_ (478)
i=0
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There is a strong analogy between Egs. (4.72) and (4.78): Equation (4.72) expresses
the Fourier transform of the sequence of samples, x[n] (with period T'), in terms of the
Fourier transform of the continuous-time signal x.(¢): Equation (4.78) expresses the
Fourier transform of the discrete-time sampled sequence x4{n] (with sampling period M)
in terms of the Fourier transform of the sequence x[n]. If we compare Eqs. (4.73) and
(4.78), we see that X,(e/*) can be thought of as being composed of either an infinite set
of copies of X.(j€2),frequency scaled through w = Q7" and shifted by integer multiples
of 27/ T’ (Eq. (4.73)). or M copies of the periodic Fourier transform X (e/®), frequency
scaled by M and shifted by integer multiples of 27 (Eq. (4.78)). Either interpretation
makes it clear that X,(e/®) is periodic with period 27 (as are all discrete-time Fourier
transforms) and that aliasing can be avoided by ensuring that X (e/*) is bandlimited,
ie.,

X(e'”) =0, wy < |w| <. (4.79)

and 27 /M > 2wy,

Downsampling is illustrated in Figure 4.21. Figure 4.21(a) shows the Fourier trans-
form of a bandlimited continuous-time signal. and Figure 4.21(b) shows the Fourier
transform of the impulse train of samples when the sampling period is T. Figure 4.21(c)
shows X (e/*) and is related to Figure 4.21(b) through Eq. (4.18). As we have already
seen, Figures 4.21(b) and (c) differ only in a scaling of the frequency variable. Fig-
ure 4.21(d) shows the discrete-time Fourier transform of the downsampled sequence
when M = 2. We have plotted this Fourier transform as a function of the normalized
frequency w = QT'. Finally, Figure 4.21(e) shows the discrete-time Fourier transform
of the downsampled sequence plotted as a function of the continuous-time frequency
variable €2. Figure 4.21(e) is identical to Figure 4.21(d), except for the scaling of the
frequency axis through the relation @ = w/ T".

In this example, 27/ T = 42y 1.e., the original sampling rate 1s exactly twice the
minimum rate to avoid aliasing. Thus, when the original sampled sequence is down-
sampled by a factor of M = 2. no aliasing results. If the downsampling factor is more
than 2 in this case, aliasing will result, as illustrated in Figure 4.22.

Figure 4.22(a) shows the continuous-time Fourier transform of x.(¢), and Fig-
ure 4.22(b) shows the discrete-time Fourier transform of the sequence x[#n] = x.(nT).
when 27/ T = 4Qy. Thus, oy = Q8T = 7/2. Now, if we downsample by a factor of
M = 3, we obtain the sequence x4[n] = x[3n] = x.(n3T ) whose discrete-time Fourier
transform is plotted in Figure 4.22(c) with normalized frequency w = QT'. Note that
because Mwy = 37/2, which is greater than , aliasing occurs. In general, to avoid
aliasing in downsampling by a factor of M requires that

wonM < 7 or wy <T/M. (4.80)

If this condition does not hold, aliasing occurs, but it may be tolerable for some appli-
cations. In other cases, downsampling can be done without aliasing if we are willing to
reduce the bandwidth of the signal x[n] before downsampling. Thus, if x[n] is filtered
by an ideal lowpass filter with cutoff frequency 7/ M, then the output ¥[#] can be down-
sampled without aliasing, as illustrated in Figures 4.22(d). (e), and (f). Note that the
sequence ¥4{n] = X[nM] no longer represents the original underlying continuous-time
signal x.(t). Rather, ¥4[n] = x.(nT"), where T' = MT, and X.(¢) is obtained from x,(t)
by lowpass filtering with cutoff frequency Q, = 7/ T = = /(MT).
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Figure 4.21 Frequency-domain illustration of downsampling.
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Figure 4.22 (a)—(c) Downsampling with aliasing. (d)—(f) Downsampling with
prefiltering to avoid aliasing.
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Lowpass filter
——— Gain=1 — &M  e—
x[n] Cutoff = #w/M | X[n] %,ln] = ¥[nM)
Sampling Sampling Sampling Figure 4.23 General system for
period T period T period T'=MT  sampling rate reduction by M.

From the preceding discussion, we see that a general system for downsampling by
a factor of M is the one shown in Figure 4.23. Such a system is called a decimator, and
downsampling by lowpass filtering followed by compression has been termed decimation
(Crochiere and Rabiner, 1983).

4.6.2 Increasing the Sampling Rate by an Integer Factor

We have seen that the reduction of the sampling rate of a discrete-time signal by an
integer factor involves sampling the sequence in a manner analogous to sampling a
continuous-time signal. Not surprisingly, increasing the sampling rate involves opera-
tions analogous to D/C conversion. To see this, consider a signal x[#] whose sampling
rate we wish to increase by a factor of L. If we consider the underlying continuous-time
signal x.(¢), the objective is to obtain samples

xi[n] = x.(nT"), (4.81)
where T' = T/ L, from the sequence of samples
x[n] = x.(nT). (4.82)

We will refer to the operation of increasing the sampling rate as upsampling.
From Eqs. (4.81) and (4.82) it follows that
xi[n] = x[n/L] = x.(nT/L), n=0,+L, £2L,.... (4.83)

Figure 4.24 shows a system for obtaining x;{n] from x[n] using only discrete-time pro-
cessing. The system on the left is called a sampling rate expander (see Crochiere and
Rabiner, 1983) or simply an expander. Its output is

_fx[n/L), n=0,£L, £2L, ...,
*eln] = {0, otherwise, (4.84)
or equivalently,
xe[n] = Y x[k]s[n — kL). (4.85)
k=—oc

The system on the right is a lowpass discrete-time filter with cutoff frequency 7/ L and
gain L. This system plays a role similar to the ideal D/C converter in Figure 4.10(b).
First we create a discrete-time impulse train x.[#], and then we use a lowpass filter to
reconstruct the sequence.

The operation of the system in Figure 4.24 is most easily understood in the fre-
quency domain. The Fourier transform of x.[n] can be expressed as

X, (e/) = i ( i x[k]8[n — kL]) el

n=-—0o0 k=—00

(4.86)

e}

= Z x[k]e 1¢tk = X (e/*D).

k=—00
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Lowpass filter
— b L » Gain=L ——
x[n] x.[n} Cutoff = /L xi[n]
Sampling Sampling Sampling Figure 4.24 General system for
period T period T = T/L. period "= T/L sampling rate increase by L.

Thus, the Fourier transform of the output of the expander is a frequency-scaled
version of the Fourier transform of the input; i.e., w is replaced by w L so that w is now
normalized by

w= QT (4.87)

This effect is illustrated in Figure 4.25. Figure 4.25(a) shows a bandlimited continuous-
time Fourier transform, and Figure 4.25(b) shows the discrete-time Fourier transform of
the sequence x[n] = x.(nT), where 7/ T = Qu. Figure 4.25(¢c) shows X, (¢/*) according
to Eq. (4.86), with L. = 2, and Figure 4.25(¢) shows the Fourier transform of the desired
signal x;[n]. We see that X;(e/) can be obtained from X,(e/*) by correcting the ampli-
tude scale from 1/ Tto 1/ 7" and by removing all the frequency-scaled images of X.(j2)
except at integer multiples of 2. For the case depicted in Figure 4.25, this requires a
lowpass filter with a gain of 2 and cutoff frequency 7/2, as shown in Figure 4.25(d).
In general, the required gain would be L. since L(1/T) = [1/(T/L)] = 1/T’, and the
cutoff frequency would be /L.

This example shows that the system of Figure 4.24 does indeed give an output
satisfying Eq. (4.81) if the input sequence x[n] = x.(nT) was obtained by sampling
without aliasing. That system is therefore called an interpolator, since it fills in the missing
samples, and the operation of upsampling is therefore considered to be synonymous
with interpolation.

Asin the case of the D/C converter, it is possible to obtain an interpolation formula
for x;[n] in terms of x[n]. First note that the impulse response of the lowpass filter in
Figure 4.24 is

hiln) = w (4.88)
Using Eq. (4.85), we obtain
RS sin[w(n — kL)/L]
xilnf = > x[K] rn KDL (4.89)

k=—nc
The impulse response #;[n] has the properties

h;[0] = 1.

(4.90)
hi[n] =0, n==xL £2L,....
Thus, for the ideal lowpass interpolation filter, we have
xi[n] = x[n/ L) = x.(nT/ L) = x.(nT"), n=0 %=L £21,..., (4.91)

as desired. The fact that x;[n] = x.(nT") for all n follows from our frequency-domain
argument.

In practice, ideal lowpass filters cannot be implemented exactly, but we will see
in Chapter 7 that very good approximations can be designed. (Also, see Schafer and
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Figure 4.25 Frequency-domain illustration of interpolation.
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Rabiner, 1973, and Oetken et al., 1975.) In some cases, very simple interpolation proce-
dures are adequate. Since linear interpolation is often used (even though it is generally
not very accurate), it is worthwhile to examine linear interpolation within the general
framework that we have just developed.

Linear interpolation can be accomplished by the system of Figure 4.24 if the filter
has impulse response

o f1=lal/L. |nl < L.
hin[n] = {0, otherwise, (4.92)
as shown in Figure 4.26 for L = 5. With this filter, the interpolated output will be
xlin[n] = Z xt’[k]hlin[n - k] = Z x[k]hlin[n - kL] (493)
k=—oc k=—0o¢

Figure 4.27(a) depicts x.[n] and xji[#] for the case L = 5. From this figure, we see that

1 h]in["]
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Figure 4.26 Impulse response for

0 n linear interpolation.
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(b) with ideal lowpass interpolation filter.
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xiin[1] is identical to the sequence obtained by linear interpolation between the samples.
Note that

hin[0] = 1.
(4.94)
h]m[n] 20, n::i:L, :tzL,...,
so that
xin[n) = x[n/L] at n=0,+L,+2L,.... (4.95)

The amount of distortion in the intervening samples can be gauged by compar-
ing the frequency response of the linear interpolator with that of the ideal lowpass
interpolator for a factor-of- L interpolation. It can be shown (see Problem 4.50) that

. 2
Sm(wL/2)} | (496)

fwy l
Hin(e'”) = I [ sin{w/2)

This function is plotted in Figure 4.27(b) for L = 5, together with the ideal lowpass
interpolation filter. From the figure we see that if the original signal is sampled at the
Nyquist rate, linear interpolation will not be very good, since the output of the filter
will contain considerable energy in the band 7/ L < |w| < m. However, if the original
sampling rate is much higher than the Nyquist rate. then the linear interpolator will
be more successful in removing the frequency-scaled images of X,.(j€2) at multiples of
27/ L. This is because Hjj,(e/®) is small at these normalized frequencies and at higher
sampling rates the shifted copies of X.(j€2) are more localized at these frequencies. This
is intuitively reasonable, since, if the original sampling rate greatly exceeds the Nyquist
rate, the signal will not vary significantly between samples, and thus, linear interpolation
should be more accurate for oversampled signals.

4.6.3 Changing the Sampling Rate by a Noninteger Factor

We have shown how to increase or decrease the sampling rate of a sequence by an
integer factor. By combining decimation and interpolation, it is possible to change
the sampling rate by a noninteger factor. Specifically, consider Figure 4.28(a), which
shows an interpolator that decreases the sampling period from 7T to 7/ L, followed by
a decimator that increases the sampling period by M, producing an output sequence
%4[n] that has an effective sampling period of 7" = TM/L. By choosing L and M
appropriately, we can approach arbitrarily close to any desired ratio of sampling periods.
For example, if L = 100 and M = 101, then 7' = 1.017.

If M > L, thereisanetincrease in the sampling period (a decrease in the sampling
rate),and if M < L, the opposite is true. Since the interpolation and decimation filters in
Figure 4.28(a) are in cascade, they can be combined as shown in Figure 4.28(b) into one
lowpass filter with gain L and cutoff equal to the minimumof r/Land 7/M. If M > L,
then = /M is the dominant cutoff frequency, and there is a net reduction in sampling
rate. As pointed out in Section 4.6.1, if x[n] was obtained by sampling at the Nyquist
rate, the sequence %4[n] will be a lowpass-filtered version of the original underlying
bandlimited signal if we are to avoid aliasing. On the other hand, if M < L, thenw/Lis
the dominant cutoff frequency, and there will be no need to further limit the bandwidth
of the signal below the original Nyquist frequency.
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Figure 4.28 (a) System for changing the sampling rate by a noninteger factor. (b)

Simplified system in which the decimation and interpolation filters are combined.

Example 4.11 Sampling Rate Conversion by
a Noninteger Rational Factor

Figure 4.29 illustrates sampling rate conversion by a rational factor. Suppose that a
bandlimited signal with X.(;2) as given in Figure 4.29(a) is sampled at the Nyquist
rate; i.e.. 2/ T = 2Qu. The resulting discrete-time Fourier transform

~ = w 2nk
et 50 (7))

k=—0oc

is plotted in Figure 4.29(b). If we wish to change the sampling period to 7’ = (3/2) T,
we must first interpolate by a factor L. = 2 and then decimate by a factor of M = 3.
Since this implies a net decrease in sampling rate, and the original signal was sampled
at the Nyquist rate, we must incorporate additional lowpass filtering in order to avoid
aliasing.

Figure 4.29(c) shows the discrete-time Fourier transform of the output of the
L = 2 upsampler. If we were interested only in interpolating by a factor of 2. we
could choose the lowpass filter to have a cutoff frequency of w. = /2 and a gain
of L. = 2. However, since the output of the filter will be decimated by M = 3, we
must use a cutoff frequency of w. = n/3, but the gain of the filter should still be
2 as in Figure 4.29(d). The Fourier transform X;(e/®) of the output of the lowpass
filter is shown in Figure 4.29(e). The shaded regions indicate the part of the signal
spectrum that is removed due to the lower cutoff frequency for the interpolation filter.
Finally, Figure 4.29(f) shows the discrete-time Fourier transform of the output of the
downsampler by M = 3. Note that the shaded regions show the aliasing that would
have occurred if the cutoff frequency of the interpolation lowpass filter had been /2
instead of x /3.
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Figure 4.29 Illustration of changing the sampling rate by a noninteger factor.



