Chapter 5: Transport Through Neutral Membranes

Medical Equipment I 2008-2009

Membranes

- Cells are surrounded by a membrane 7-10 nm thick
- Permeable to a substance
 - Substance can pass freely through it
- Semipermeable
 - Only certain substances can get through it
- Permeant
 - Substance that can pass through

Membranes

- Examples
 - Straight pores
 - Tortuous pores
 - No pores; molecules dissolve
- Water motion: bulk flow
- Solute motion: random walk
- Effective motion: diffusion superimposed on bulk flow

Gas law

p_i ∨*⊤N<mark>;</mark>*

$$p_1 V^* = n_1^* RT = N_1^* k_B T$$

N₁^{*}: # of molecules, n₁^{*}: # of moles
Denote,

$$C_1 = \frac{N_1^*}{V^*}$$
 , $c_1 = \frac{n_1^*}{V^*}$

- Imagine volume V* divided into two subvolumes V,V'
 - Pressure remains p_1 in both partitions
 - Average number of molecules remain unchanged

$$p_1 = p'_1 = C_1 k_B T = C'_1 k_B T$$

Second species

o Cannot pass through

$$p = p_1 + p_2$$

$$p_1 = C_1 k_B T$$

$$p_2 = C_2 k_B T$$

Total partial pressure for all species that cannot pass through the membrane is called osmotic pressure and denoted by π

$$\pi_2 = C_2 k_B T$$

Total pressure = driving pressure + osmotic pressure

$$p = p_d + \pi$$

There is no flow if the driving pressure is the same between the two sides of the membrane

Edema

Abnormal collection of fluid inside tissue

Edema due to Heart Failure

- Right heart failure
 - Swelling of legs
- Left heart failure
 - o Pulmonary edema
- Root cause:
 Rising venous pressure

Nephrotic Syndrome, Liver Disease and Ascitis

- Lower protein in blood
 - o Hypoproteinemia
- Several causes
 - Nephrons leaking proteins
 - Liver malfunction
 - Ascitis (blocking of veins in the liver)

Edema of Inflammatory Reactions

3 Steps

- Vasodilation
- Fluid exodation (plasma)
- Cellular migration
- Rise in osmotic pressure in extracellular space

Headaches in Renal Dialysis

- Capillary-brain barrier
 - Low permeability to urea
- Plasma urea ↓, temporary urea osmotic pressure inside brain ↑
- Water flows into brain causing cerebral edema, which can cause severe headache.
- Converse: inject into blood urea/manitol
 - Water flows from brain to blood
 - Emergency treatment for cerebral edema

Osmotic Diuresis

- Water and many solutes pass into nephron from the blood
- Net reabsorption occurs through the rest of the nephron
 - Most of water and variable for solutes
- Medium-weight molecules are not reabsorbed at all (e.g., manitol, glucose)
 - If they are present, water reabsorption is less
 - Increase in urine volume

The Artificial Kidney: Example

- Let:
 - $\circ \omega RT = 5 \times 10^{-6} \text{ m/s}$
 - *S*= 2 m²
 - *V*= 40 L
- Then,
 - ο *τ*= 1.1 h
- Dialysis typically takes hours
 - \circ A number of au must elapse
 - Larger molecules are slower
 - Not to cause cerebral edema and headache

Countercurrent Transport

Problem assignment on web site