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Introduction

 Is it possible to use classical mechanics to 

describe systems of many particles ?

 Example: particles in 1 mm3 of blood

 Compute translational motion in 3D

 6 multiplications + 6 additions / particle

 For 1019 particle, 1020 operations required/interval

 108 s (3 years) on a 1G operations/s computer !!
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Statistical Mechanics

 Do not care about individual molecules

 Impossible to trace practically

 Average macroscopic properties over 
many particles are what we need

 Such properties are studied under 
statistical physics / statistical mechanics

 e.g., Pressure, Temperature, etc.

 Average and probability distribution 



Gas Molecules in a Box

 Total number of molecules = N

 Box with imaginary partition

 Particles in left half = n

 P(n) can be computed from an 

ensemble of boxes



Gas Molecules in a Box

 Example: N=1

 P(0)= 0.5 , P(1)= 0.5

 Example: N=2



Gas Molecules in a Box

 Example: N=3



Gas Molecules in a Box

 Histogram representation



Gas Molecules in a Box

 General case: binomial distribution

 Assume a general box partitioning into 

two volumes v (left) and v’ (right) such 

that p=v/V, q= v’/V, then p+q=1

 Probability of n particles in volume v 

given by
v v’

nNn pp
nNn

N
pNnP 


 )1(

)!(!

!
),;(



Microstates and 

Macrostates

 Microstates: all information about a 
system

 Position and velocity of all molecules

 Macrostates: average properties

 Number of molecules in each half

 Example: Toys in a room

 Microstate: position of every toy

 Macrostate: “picked-up” or “mess”



Gas Box Example

 Partition in between

 Partition suddenly removed

 Many more microstates available

 Improbable to remain all on left 

 Equilibium: half on each side 

 Macroscopic states not changing 

with time

 Most random, most probable



Microstates

 Energy levels defined by a set of 
quantum numbers = 3N (in 3D)

 Discrete levels

 Total number of quantum numbers 
required to specify state of all particles 
is called degrees of freedom (f)

 Microstate: specified if all quantum 
numbers for all particles are specified



First Law of 

Thermodynamics

 Total energy U = sum of particle 

energies
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Exchange of Energy

 Exachange forms: Work and Heat

WQU 

No work – Heat added Work done – No heat flow 

(Adiabatic change)
No work – No heat flow



Exchange of Energy

 Pure heat flow involves a change in the 

average number of particles in each level

 No change in positions of levels

 Work involves a change in the macroscopic 

parameters

 Change in positions of some levels

 Change in average populations in levels

 General case: both heat flow and work

 Sum of changes due to both



Specifying Microstates and 

Macrostates

 Microstates

 quantum numbers of each particle in the 

system

 Macrostates

 All of external parameters

 Total energy of the system



Specifying Microstates and 

Macrostates

 Statistical physics: ensemble of identical 
systems

 At some instant of time, “freeze” ensemble

 “Unfreeze” then wait and repeat “freeze”

 Edgodicity:

 Equivalence of time and ensemble averages

ensemble in the systems ofnumber  Total

 microstatein  systems ofNumber 
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Basic Postulates

1. If an isolated system is found with 
equal probability in each one of its 
accessible microstates, it is in 
equilibrium

 Converse is also true

2. If it is not in equilibrium, it tends to 
change with time until it is in 
equilibrium

 Equilibrium is the most random, most 
probably state.



Thermal Equilibrium

 Idealization: system that does not interact 

with surroundings

 Adiabatic walls can never be realized

 Much can be learned by considering two 

systems that can exchange heat, work or 

particles but isolated from the rest of the 

universe

 One of them is our system and the other can be 

taken to be the rest of the universe



Thermal Equilibrium

 Consider only heat flow

 Total system A*

 Number of particles N*= N+N’

 Total energy U*= U+U’

 Two systems can exchange heat

 U and U’ may change as long as U*= const

 Barrier prevents exchange of particles or 
work
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Thermal Equilibrium

 Number of microstates

 *(U)= (U) × ’(U)

 Probability of microstate

 P(U)= *(U) / *tot

 *tot= U *(U) 

 Example: system of 2 particles in A and A’

 Total energy U*=10u

 Possible energy levels for particles = 1u, 2u, ..
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Thermal Equilibrium

 Ex: U= 2u → U’= U*-U= 10u-2u= 8u

 Possible A microstates: (1u,1u)

 (U)= 1

 Possible A’ microstates: (1u,7u), (2u,6u), 

(3u,5u), (4u,4u), (5u,3u), (6u,2u), (7u,1u)

 ’(U)= 7

 *(U)= (U) × ’(U)= 7



Thermal Equilibrium



Thermal Equilibrium

 Most probable value of U has max P(U)
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Thermal Equilibrium

 Define a quantities  and ’ with units 
of energy such that 

 Equilibrium at  =’ ,

 related to absolute temperature 
 kB= Boltzmann const= 1.38×10-23 J K-1

 T= absolute temperature K
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Entropy

 Develop a condition for thermal 

equilibrium

 ln * = ln  + ln ’

 Define entropy S as
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Entropy

 Feature #1: temperature definition

 Feature #2: entropy = sum of entropies

 Feature #3: max entropy at equilibrium
 Follows from max * at equilibrium

 Feature #4: entropy change related to heat 
flow
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The Boltzmann Factor

 Two isolated systems

 In thermal contact 

 Let system A be a single particle

 Let system A’ be a large system

 “reservoir”

 Transfer of energy → Number of 
microstates in A and A’ change

 Ratio of number of states  G 
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The Boltzmann Factor

 Consider system A has two different 

energies Ur and Us

 Reservoir A’ is very large

 Its temperature T’ remains the same

 Has many energy levels

 Recall that P(U)= *(U) / *tot

 Recall that  )(')()( ** UUUU 



The Boltzmann Factor

 Then,

 Let

and
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The Boltzmann Factor

 Recall that 

 Equilibrium at  =’ ,

 related to absolute temperature 

 kB= Boltzmann const= 1.38×10-23 J K-1

 T= absolute temperature K

 Consider solving the above equation for ’ 

 T’ is constant
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The Boltzmann Factor

 Then,

 Hence, at equilibrium T= T’
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The Boltzmann Factor

 R is called the “Boltzmann factor”

 Factor by which the number of 

microstates in the reservoir decreases 

when the reservoir gives up energy Us-Ur

 Relative probability of finding system A 

with energy Ur or Us is given by
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The Boltzmann Factor

 G factor: “density of states factor”

 Property of the system

 Ex: single atom with discrete energy 

levels, G=1

 Degeneracy: G may be different



Example 1: Nernst Equation

 Concentration of ions on the two sides 

of a semi-permeable membrane and 

its relation to the voltage across the 

membrane
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Nernst Equation

 U= Ek+Ep (Ek is the same)

 Potential energy is Ep= zev

 Then, 

 Since R=NAKB and F=NAe

Nernst

Equation                         
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Example 2: Pressure 

variation in the atmosphere

 Atmospheric pressure decreases with 

altitude

 Potential energy: gravitational =m×g×y
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Problem Assignment

 Posted on class web site 

Web: http://ymk.k-space.org/courses.htm


