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Introduction

= Is it possible to use classical mechanics to
describe systems of many particles ?

= Example: particles in 1 mm?3 of blood
o Compute translational motion in 3D

V.(t+At) =v. (1)) + FAt/m |, (I=X,Y,2)

o 6 multiplications + 6 additions / particle
o For 10'° particle, 102° operations required/interval
o 108 s (3 years) on a 1G operations/s computer !!



[Statistical Mechanics

Do not care about individual molecules
o Impossible to trace practically

Average macroscopic properties over
many particles are what we need

Such properties are studied under
statistical physics / statistical mechanics
o e.d., Pressure, Temperature, etc.

o Average and probability distribution



[Gas Molecules In a Box

Total number of molecules = N

Box with imaginary partition |
Particles in left half = n |

P(n) can be computed from an
ensemble of boxes
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[Gas Molecules In a Box

Example: N=1

P(0)= 0.5, P(1)= 0.5

Example: N=2
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Gas Molecules In a Box

Example: N=3

Molecule 1 Molecule 2 Molecule 3 n P(n:3)
R R R 0 S
R R L 1
R L R 1 X
L R R 1
L I R 2
L R L 2 2
R L. L 2
L L L 3 <




Gas Molecules In a Box

Histogram representation

0.5 _ 0.5 _ 0.5 _
oaf} N=T1 oa[J] N=2 o[ N=38
0.3} 0.3 0.3

Po2H Poo Poo
0.1] 0.1 0.1
ool L L o 0.0

0 4np8 0 4n8 0 4p 8

0.5 — _ 05— o _
oal N=4 o2 N=10
0.3 0.3 -

Poo Pool_
0.1 0.1
0.0 0.0

0 4p8 O 4np 8

FIGURE 3.2. Histograms of P (n; N) for different values of N.



[Gas Molecules In a Box

General case: binomial distribution

Assume a general box partitioning into
two volumes v (left) and v’ (right) such
that p=v/V, g= v/V, then p+q=1

Probability of n particles in volume v

given by

% v’

N!

PN p) = (N —n)! P p)™




Microstates and
[I\/Iacrostates

Microstates: all information about a
system

o Position and velocity of all molecules

Macrostates: average properties
o Number of molecules in each half

Example: Toys in a room 7
o Microstate: position of every toy
o Macrostate: “picked-up” or “mess”




Gas Box Example

= Partition in between

= Partition suddenly removed
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Many more microstates available
Improbable to remain all on left
Equilibium: half on each side

Macroscopic states not changing
with time

Most random, most probable
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[Microstates

Energy levels defined by a set of
guantum numbers = 3N (in 3D)

o Discrete levels
Total number of quantum numbers

required to specify state of all particles
IS called degrees of freedom (7)

Microstate:. specified If all guantum
numbers for all particles are specified
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First Law of
Thermodynamics

Total energy U = sum of particle
energies
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Exchange of Energy

Exachange forms: Work and Heat
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Work done — No heat flow
(Adiabatic change)




Exchange of Energy

= Pure heat flow involves a change in the
average number of particles in each level

o No change in positions of levels
= Work involves a change in the macroscopic
parameters
o Change in positions of some levels
o Change In average populations in levels

= General case: both heat flow and work
o Sum of changes due to both



Specifying Microstates and
[I\/Iacrostates
Microstates

o quantum numbers of each particle in the
system

Macrostates
o All of external parameters
o Total energy of the system



Specifying Microstates and
[I\/Iacrostates

Statistical physics: ensemble of identical
systems

At some instant of time, “freeze” ensemble

Number of systemsin microstatel
Total number of systemsin the ensemble

“Unfreeze” then wait and repeat “freeze”
Edgodicity:

o Equivalence of time and ensemble averages

P(microstatel) =




[Basic Postulates

1. If an isolated system is found with
equal probabillity in each one of its
accessible microstates, it Is In
equilibrium
o Converse is also true

2. If It Is not In equilibrium, It tends to
change with time until it Is In
equilibrium
o Equilibrium Is the most random, most

probably state.



Thermal Equilibrium

|dealization: system that does not interact
with surroundings

o Adiabatic walls can never be realized

Much can be learned by considering two
systems that can exchange heat, work or

particles but isolated from the rest of the
universe

o One of them is our system and the other can be
taken to be the rest of the universe



[Thermal Equilibrium ]

= Consider only heat flow
= Total system A*

L C<Z
QE<Z

o Number of particles N*= N+N’
o Total energy U*= U+U’

= Two systems can exchange heat
o U and U may change as long as U*= const

o Barrier prevents exchange of particles or
work




[Thermal Equilibrium

A A @

. N N!

Number of microstates ® v |eo v
o Q*(U)=QU) x Q'(U) o . —— .

Probability of microstate
o AU)=Q*U) [ Q%

0 Q%= ZU Q*(U)
Example: system of 2 particles in A and A’

o Total energy U*=10u
o Possible energy levels for particles = 1u, 2u, ..



[Thermal Equilibrium ]

= Ex: U=2u — U'=U*-U= 10u-2u=8u
o Possible A microstates: (1u,lu)
o QU)=1

o Possible A’ microstates: (1u,7u), (2u,6u),
(3u,5u), (4u,4u), (5u,3u), (6u,2u), (7u,1lu)

o Q(U)=7
o Q*(U)=Q(U) x Q(U)=7



Thermal Equilibrium

System A System A’ System A*
U ) U’ Q Q*
2u 1 u 7 7
3u 2 Tu 0 12
4u 3 bu 5) 15
Hu 4 hu 4 16
bu D 4t 3 15
Tu 6 3u 2 12
U 7 2U 1 7

Qj:()t — 84




[Thermal Equilibrium

Most probable value of U has max A
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[Thermal Equilibrium

Define a quantities rand 7 with units

of energy such that

1 1 dQ 1 1 dQ
and —

r QdU ' Q' 'dU’
Equilibrium at =17,
o related to absolute temperature

T =K;T

k= Boltzmann const= 1.38x1023 J K-

7= absolute temperature K




[Entropy

Develop a condition for thermal

equilibrium

o INQ*=INQ+1InQ
EEi(lﬂgl)
r duU

Define entropy S as
S=k,InQ| —— Q=g




[Entropy

Feature #1: temperature definition
dS k; 1

du T
Feature #2: entropy = sum of entropies
S*=5+3
Feature #3: max entropy at equilibrium
o Follows from max Q* at equilibrium

Feature #4: entropy change related to heat
flow




[The Boltzmann Factar

Two Isolated systems
o In thermal contact

Let system A be a single

A

-

0 C< Z

RE<Z

narticle

Let system A’ be a large system

o “reservoir”

Transfer of energy — Number of
microstates in A and A’ change

o Ratio of number of states

=G




[The Boltzmann Factor

Consider system A has two different
energies U, and U,

Reservoir A’ is very large
o Its temperature 7°'remains the same
o Has many energy levels

Recall that A(U)= Q*(U) / O,
Recall that Q" (U)=QU)-Q'(U" -U)



[The Boltzmann Factor

Then,

P(Us) . Q*(Us) . Q(Us)Ql(U* _Us)

P(Ur) B Q*(Ur) B Q(Ur)Ql(U* _Ur)

Let

G = Q(Us)

- QU,)

and

R

_ QU -U))

- QUT-U)




[The Boltzmann Factor

Recall that
1 1 dQ 1 1 dQ
— = and — =
r QdU ' Q' dU’
Equilibrium at 7=7",

r'=k;T'

o related to absolute temperature
kg~ Boltzmann const= 1.38x10-23 J K1
7= absolute temperature K

Consider solving the above equation for 0’
o T is constant



[The Boltzmann Factor

1(dg'j_
Q'\dU') kT

ma 1 O
=2,

Then,

Q' (U') = constant xe" /"’

Hence, atequmbﬂun17E I’

R=

(U™ -U,)/kgT
constant x e _ e ~(U-U,)/ksT

constant x eV “Ur/ksT




[The Boltzmann Factor

R Is called the “Boltzmann factor”

o Factor by which the number of
microstates In the reservoir decreases
when the reservoir gives up energy U.-U,

Relative probability of finding system A
with energy U, or U.is given by

PU.) _.p_| QU
PU,) QU,)_

. e_(Us_U r )/kBT




[The Boltzmann Factor

G factor: “density of states factor”
o Property of the system

o EX: single atom with discrete energy
levels, G=1

o Degeneracy: G may be different



[Example 1: Nernst Equation

Concentration of ions on the two sides
of a semi-permeable membrane and
Its relation to the voltage across the

membrane
e | ° o
P(2) _C,] e I, . e
PQ) C, ‘o @ ¥




[Nernst Equation

U= E,+E, (E, Is the same)
o Potential energy Is E,= zev

Then, |C, _ o260 ~)/ kT
C,

Since R=N,Kgz and F=N e

N&V’/?Sl.‘ v RT o G C
Equation 2 1T e C,




Example 2: Pressure
[variation In the atmosphere

Atmospheric pressure decreases with
altitude

Potential energy: gravitational =mxgxy

C(y) _ e—mgy/kBT
C(0)




[Problem Assignment

Posted on class web site

Web: http://ymk.k-space.org/courses.htm




