Medical Equipment I - 2009 Chapter 3

Professor Yasser M. Kadah

Web: http://ymk.k-space.org/courses.htm

Introduction

- Is it possible to use classical mechanics to describe systems of many particles ?
- Example: particles in 1 mm³ of blood
 - Compute translational motion in 3D

$$v_i(t + \Delta t) = v_i(t) + F_i \Delta t / m \quad , \quad (i = x, y, z)$$

- 6 multiplications + 6 additions / particle
- For 10¹⁹ particle, 10²⁰ operations required/interval
- \circ 10⁸ s (3 years) on a 1G operations/s computer !!

Statistical Mechanics

- Do not care about individual molecules
 Impossible to trace practically
- Average macroscopic properties over many particles are what we need
- Such properties are studied under statistical physics / statistical mechanics
 - o e.g., Pressure, Temperature, etc.
 - Average and probability distribution

- Total number of molecules = N
- Box with imaginary partition
- Particles in left half = n
- P(n) can be computed from an ensemble of boxes

Example: N=1

 P(0)= 0.5 , P(1)= 0.5

 Example: N=2

Molecule 1	Molecule 2	n	P(n;2)
R	R	0	$\frac{1}{4}$
\mathbf{R}	\mathbf{L}	1	1
\mathbf{L} .	R	1	$\overline{2}$
\mathbf{L}	Γ	2	$\frac{1}{4}$

Example: N=3

Molecule 1	Molecule 2	Molecule 3	\overline{n}	P(n;3)
R	R	R	0	$\frac{1}{8}$
R	\mathbf{R}	L	1	0
\mathbf{R}	\mathbf{L}	R	1	$\frac{3}{8}$
\mathbf{L}	R	R	1	
L	L	\mathbf{R}	2	
L	R	\mathbf{L}	2	$\frac{3}{8}$
R	$^{\circ}$ L	\mathbf{L}	2	0
L	L	L	3	$\frac{1}{8}$

Histogram representation

FIGURE 3.2. Histograms of P(n; N) for different values of N.

- General case: binomial distribution
- Assume a general box partitioning into two volumes v (left) and v' (right) such that p=v/V, q= v'/V, then p+q=1
- Probability of n particles in volume v given by

$$P(n; N, p) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}$$

Microstates and Macrostates

- Microstates: all information about a system
 - Position and velocity of all molecules
- Macrostates: average properties
 - Number of molecules in each half
- Example: Toys in a room
 - Microstate: position of every toy
 - Macrostate: "picked-up" or "mess"

Gas Box Example

- Partition in between
- Partition suddenly removed
 - Many more microstates available
 - Improbable to remain all on left
 - Equilibium: half on each side
 - Macroscopic states not changing with time
 - Most random, most probable

Microstates

- Energy levels defined by a set of quantum numbers = *3N* (in 3D)
 Discrete levels
- Total number of quantum numbers required to specify state of all particles is called *degrees of freedom (f)*
- Microstate: specified if all quantum numbers for all particles are specified

First Law of Thermodynamics

Total energy U = sum of particle energies

$$U = 2u_{23} + u_{25} + u_{26} + u_{28}$$

$$29$$

$$28$$

$$27$$

$$26$$

$$25$$

$$24$$

$$23$$

Exchange of Energy

Exachange forms: Work and Heat

 $\Delta U = Q - W$

No work – No heat flow

No work - Heat added

Work done – No heat flow (Adiabatic change)

Exchange of Energy

- Pure heat flow involves a change in the average number of particles in each level
 - No change in positions of levels
- Work involves a change in the macroscopic parameters
 - Change in positions of some levels
 - Change in average populations in levels
- General case: both heat flow and work
 - Sum of changes due to both

Specifying Microstates and Macrostates

- Microstates
 - quantum numbers of each particle in the system
- Macrostates
 - All of external parameters
 - Total energy of the system

Specifying Microstates and Macrostates

- Statistical physics: ensemble of identical systems
- At some instant of time, "freeze" ensemble

 $P(\text{microstate}i) = \frac{\text{Number of systems in microstate}i}{\text{Total number of systems in the ensemble}}$

- "Unfreeze" then wait and repeat "freeze"
- Edgodicity:

Equivalence of time and ensemble averages

Basic Postulates

- 1. If an isolated system is found with equal probability in each one of its accessible microstates, it is in equilibrium
 - Converse is also true
- 2. If it is not in equilibrium, it tends to change with time until it is in equilibrium
 - Equilibrium is the most random, most probably state.

- Idealization: system that does not interact with surroundings
 - Adiabatic walls can never be realized
- Much can be learned by considering two systems that can exchange heat, work or particles but isolated from the rest of the universe
 - One of them is our system and the other can be taken to be the rest of the universe

- Consider only heat flow
- Total system A*

- Number of particles N*= N+N'
- Total energy U*= U+U'
- Two systems can exchange heat
 - U and U' may change as long as U*= const
 - Barrier prevents exchange of particles or work

• Number of microstates • $\Omega^*(U) = \Omega(U) \times \Omega'(U)$

- Probability of microstate
 - $\circ P(U) = \Omega^*(U) / \Omega^*_{tot}$
 - $\circ \quad \Omega^*_{tot} = \Sigma_{\mathsf{U}} \ \Omega^*(\mathsf{U})$
- Example: system of 2 particles in A and A'
 - Total energy U*=10u
 - Possible energy levels for particles = 1u, 2u, ..

Ex: $U = 2u \rightarrow U' = U^* - U = 10u - 2u = 8u$

- Possible A microstates: (1u,1u)
- Ω(U)= 1
- Possible A' microstates: (1u,7u), (2u,6u), (3u,5u), (4u,4u), (5u,3u), (6u,2u), (7u,1u)
- o Ω'(U)= 7
- $\circ \Omega^*(U) = \Omega(U) \times \Omega'(U) = 7$

Syster	n A	Syste	m A'	System A^*
\overline{U}	Ω	$\overline{U'}$	Ω'	$\underline{\Omega^*}$
2u	1	$\overline{8u}$	7	7
3u	2	7u	6	12
4u	3	6u	5	15
5u	4	5u	4	10 15
6u	5	4u	3	10
7u	6	$\frac{3u}{2}$	2 1	$\frac{12}{7}$
8u	7	2u	1	$\Omega_{\rm tot}^* = 84$

Most probable value of U has max P(U)

$$\frac{d}{dU}P(U) = \frac{d}{dU} \left[\frac{\Omega^*(U)}{\Omega^*_{tot}}\right] = \frac{1}{\Omega^*_{tot}} \frac{d}{dU} \left[\Omega^*(U)\right] = 0$$

$$\Omega^*(U) = \Omega(U) \cdot \Omega'(U^* - U)$$

$$\frac{d\Omega^{*}(U)}{dU} = 0 = \Omega\Omega' \left(\frac{1}{\Omega} \frac{d\Omega}{dU} - \frac{1}{\Omega'} \frac{d\Omega'}{dU'} \right)$$

\neq 0 = 0 for equilibrium

Define a quantities \(\tau\) and \(\tau'\) with units of energy such that

$$\frac{1}{\tau} \equiv \frac{1}{\Omega} \frac{d\Omega}{dU} \text{ and } \frac{1}{\tau'} \equiv \frac{1}{\Omega'} \frac{d\Omega'}{dU'}$$

• Equilibrium at $\tau = \tau'$,

related to absolute temperature

$$\tau = k_B T$$

- k_B = Boltzmann const = 1.38 × 10⁻²³ J K⁻¹
- *T*= absolute temperature K

Entropy

Develop a condition for thermal equilibrium

 $\circ \ln \Omega^* = \ln \Omega + \ln \Omega'$

$$\frac{1}{\tau} \equiv \frac{d}{dU} (\ln \Omega)$$

$$\Omega = e^{S/k_B}$$

Entropy

Feature #1: temperature definition

dS	$\underline{k_{B}}$	_ 1
dU	τ	T

Feature #2: entropy = sum of entropies

$$S^* = S + S'$$

- Feature #3: max entropy at equilibrium
 o Follows from max Ω* at equilibrium
- Feature #4: entropy change related to heat flow

Two isolated systems
 In thermal contact

- Let system A be a single particle
- Let system A' be a large system
 "reservoir"
- Transfer of energy → Number of microstates in A and A' change
 - Ratio of number of states \equiv G

- Consider system A has two different energies U_r and U_s
- Reservoir A' is very large
 - Its temperature *T*' remains the same
 - Has many energy levels
- Recall that $P(U) = \Omega^*(U) / \Omega^*_{tot}$
- Recall that $\Omega^*(U) = \Omega(U) \cdot \Omega'(U^* U)$

Then,

Let

O(U)		$O'(U^* U)$
$G = \frac{\Omega(U_s)}{\Omega(U_r)}$	and	$R = \frac{\Omega^2 (U^* - U_s)}{\Omega' (U^* - U_r)}$

Recall that

$$\frac{1}{\tau} \equiv \frac{1}{\Omega} \frac{d\Omega}{dU} \text{ and } \frac{1}{\tau'} \equiv \frac{1}{\Omega'} \frac{d\Omega'}{dU'}$$

• Equilibrium at $\tau = \tau'$,

related to absolute temperature

$$\tau' = k_B T'$$

- k_B = Boltzmann const= 1.38×10⁻²³ J K⁻¹
- *T*= absolute temperature K
- Consider solving the above equation for Ω'
 T' is constant

$$\frac{1}{\Omega'} \left(\frac{d\Omega'}{dU'} \right) = \frac{1}{k_B T'} \Longrightarrow \frac{d\Omega'}{dU'} = \left(\frac{1}{k_B T'} \right) \Omega'$$

Then,

$$\Omega'(U') = \operatorname{constant} \times e^{U'/k_BT'}$$

- Hence, at equilibrium T = T'

$$R = \frac{\operatorname{constant} \times e^{(U^* - U_s)/k_B T'}}{\operatorname{constant} \times e^{(U^* - U_r)/k_B T'}} = e^{-(U_s - U_r)/k_B T}$$

- *R* is called the "Boltzmann factor"
 - Factor by which the number of microstates in the reservoir decreases when the reservoir gives up energy U_s-U_r
- Relative probability of finding system A with energy U_r or U_s is given by

$$\frac{P(U_s)}{P(U_r)} = G \cdot R = \left[\frac{\Omega(U_s)}{\Omega(U_r)}\right] \cdot e^{-(U_s - U_r)/k_B T}$$

- G factor: "density of states factor"
 - Property of the system
 - Ex: single atom with discrete energy levels, G=1
 - Degeneracy: G may be different

Example 1: Nernst Equation

Concentration of ions on the two sides of a semi-permeable membrane and its relation to the voltage across the membrane

Nernst Equation

U= E_k+E_p (E_k is the same)
 Potential energy is E_p= zev

Then,
$$\frac{C_2}{C_1} = e^{-ze(v_2 - v_1)/k_B T}$$

• Since $R = N_A K_B$ and $F = N_A e$

Nernst

Equation

$$v_2 - v_1 = \frac{RT}{zF} \ln\left(\frac{C_1}{C_2}\right)$$

Example 2: Pressure variation in the atmosphere

- Atmospheric pressure decreases with altitude
- Potential energy: gravitational $= m \times g \times y$

$$\frac{C(y)}{C(0)} = e^{-mgy/k_BT}$$

Problem Assignment

Posted on class web site

Web: http://ymk.k-space.org/courses.htm