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Transport in an Infinite 

Medium

 Definitions

 Continuity equations

 Brownian motion

 Motion in a gas

 Motion in a liquid

 Diffusion

 Applications



Definitions

 Flow rate, volume flux or volume 

current (i)

 Total volume of material transported per 

unit time

 Units:  m3s-1

 Mass flux

 Particle flux



Definitions

 Particle fluence

 Number of particles transported per unit 

area across an imaginary surface

 Units: m-2

 Volume fluence

 Volume transported per unit area across 

an imaginary surface

 Units: m3m-2 = m



Definitions

 Fluence rate or flux density

 Amount of “something” transported 

across an imaginary surface per unit area 

per unit time

 Vector pointing in the direction the 

“something” moves and is denoted by j

 Units: “something” m-2s-1

 Subscript to denote what “something” is



Definitions



Continuity Equation:  1D

 We deal with substances that do not 

“appear” or “disappear”

 Conserved

 Conservation of mass leads to the 

derivation of the continuity equation



 Consider the case of a number of particles 
 Fluence rate: j particles/unit area/unit time

 Value of j may depend on position in tube and 
time
 j = j(x,t)

 Let volume of paricles in the volume shown to 
be N(x,t)
 Change after t = N

Continuity Equation: 1D



Continuity Equation: 1D

 As x→0,

 Similarly, increase in N(x,t) is, 
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Continuity Equation: 1D

 Hence,

 Then, the continuity equation in 1D is,
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Solvent Drag (Drift)

 One simple way that solute particles 

can move is to drift with constant 

velocity. 

 Carried along by the solvent,

 Process called drift or solvent drag.



Brownian Motion

 Application of thermal equilibrium at 

temperature T

 Kinetic energy in 1D =

 Kinetic energy in 3D =

 Random motion → mean velocity   

 can only deal with mean-square velocity  
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Brownian Motion



Motion in a Gas

 Brownian motion of particles: collisions

 Mean Free Path

 Average distance between successive 

collisions

 Collision Time

 Average time between successive 

collisions



Motion in a Gas

 Consider N(x) to be number of 

particles without collision after a 

distance x

 For short distances dx, probability of 

collision is proprtional to dx
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Motion in a Gas

 Average distance = mean free path

 Similar argument can be made for time

 Collision time = tc
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Motion in a Gas

 Need to evaluate  and tc
 Consider one particle moving with a radius a1

 Consider stationary particles with radius a2

 Calculate collision possibilities



Motion in a Gas

 After moving a distance x, volume 

covered is given by,

 On average, when a particle travels 

mean free path, there is one collision

 Average number of particles in V()=1

 Concentration = 1/V()
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Motion in a Gas

 Collision Cross Section is

 Important for radiation interaction 

 Example: gas at STP, volume of 1 mol = 

22.4 L (C= 2.7×1025m-3), a1=a2=0.15 nm

 =0.13 m 

 1000 times the molecular size

 Assumption of infrequent collisions justified
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Motion in a Gas

 Given mean free path ,

 Taking the average speed as vrms,

 Dependence on m½ and 

 For air and room temperature, tc= 2×10-10s
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Motion in a Liquid

 Direct substitution in Gas equations?

 For water,

 =a=0.1 nm   → assumption broken

 tc  10-13 s  → much more frequent

 Wrong calculations

 However, concept appears to be valid!



Diffusion: Fick’s First Law

 Diffusion: random movement of 

particles from a region of higher 

concentration to a region of lower 

concentration

 Diffusing particles move independently

 Solvent at rest

 Solute transport



Diffusion: Fick’s First Law

 If solute concentration is uniform, no 
net flow

 If solute concentration is different, net 
flow occurs 

D: Diffusion constant (m2s-1)
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Diffusion: Fick’s First Law



Diffusion: Fick’s Second 

Law

 Consider 1D case

 Fick’s first law

 Continuity equation
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Diffusion: Fick’s Second 

Law

 Combining Fick’s first law and 

continuity equation,

→Fick’s second law

 3D Case,
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Diffusion: Fick’s Second 

Law

 Solving Fick’s second law for C(x,t)

 Substitution

where,

)(2/ 22

)(2
),( txe

t

N
txC 





)0(2)( 22   Dtt



Applications

 Kidney dialysis

 Tissue perfusion

 Blood oxygenation in the lung



Problem Assignments

 Information posted on web site

 Problems 1, 4, 5, 6, 8, 18, 19


