Medical Equipment I - 2009 Chapter 4

Professor Yasser M. Kadah

Web: http://ymk.k-space.org/courses.htm

Transport in an Infinite Medium

- Definitions
- Continuity equations
- Brownian motion
- Motion in a gas
- Motion in a liquid
- Diffusion
- Applications

- Flow rate, volume <u>flux</u> or volume current (*i*)
 - Total volume of material transported per unit time
 - o Units: m³s⁻¹
- Mass <u>flux</u>
- Particle <u>flux</u>

Particle <u>fluence</u>

- Number of particles transported per unit area across an imaginary surface
- Units: m⁻²
- Volume <u>fluence</u>
 - Volume transported per unit area across an imaginary surface
 - Units: $m^3m^{-2} = m$

Fluence rate or flux density

- Amount of "something" transported across an imaginary surface per unit area per unit time
- Vector pointing in the direction the "something" moves and is denoted by j
- Units: "something" m⁻²s⁻¹
- Subscript to denote what "something" is

TABLE 4.1. Units and names for j and jS in various fields.

. <u></u>	j		jS	
	Units	Names	Units	Names
Particles	$m^{-2} s^{-1}$	Particle fluence rate Particle current density Particle flux density Particle flux	s^{-1}	Particle flux Particle current Particle flux
Electric charge	${\rm C~m^{-2}~s^{-1}}$ or A ${\rm m^{-2}}$	Current density	${\rm C~s^{-1}}$ or A	Current
Mass	$\rm kg \ m^{-2} \ s^{-1}$	Mass fluence rate Mass flux density Mass flux	${\rm kg}~{\rm s}^{-1}$	Mass flux Mass flow
Energy	$J m^{-2} s^{-1} \text{ or } W m^{-2}$	Energy fluence rate Intensity Energy flux	$\rm J~s^{-1}~or~W$	Energy flux Power

Continuity Equation: 1D

- We deal with substances that do not "appear" or "disappear"
 - Conserved
- Conservation of mass leads to the derivation of the continuity equation

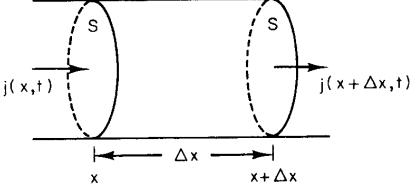
Continuity Equation: 1D

- Consider the case of a number of particles
 Fluence rate: j particles/unit area/unit time
- Value of j may depend on position in tube and time

$$\circ \quad j = j(x,t)$$

Let volume of paricles in the volume shown to be N(x,t)

• Change after $\Delta t = \Delta N$



Continuity Equation: 1D

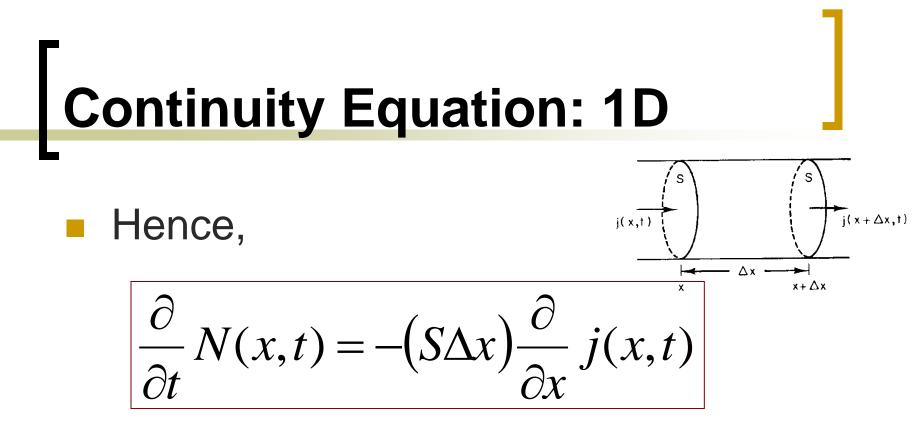
$$\Delta N = [j(x,t) - j(x + \Delta x, t)]S\Delta t$$

$$As \Delta x \rightarrow 0,$$

$$j(x,t) - j(x + \Delta x, t) = -\frac{\partial j(x,t)}{\partial x}\Delta x$$

Similarly, increase in N(x,t) is,

$$\Delta N(x,t) = N(x,t + \Delta t) - N(x,t) = \frac{\partial N}{\partial t} \Delta t$$



Then, the continuity equation in 1D is,

$$\frac{\partial C}{\partial t} = -\frac{\partial j}{\partial x}$$

Solvent Drag (Drift)

- One simple way that solute particles can move is to drift with constant velocity.
 - Carried along by the solvent,
- Process called drift or solvent drag.

$$\mathbf{j}_s = C \, \mathbf{j}_v$$

Brownian Motion

- Application of thermal equilibrium at temperature T
- Kinetic energy in $1D = k_B T/2$
- Kinetic energy in $3D = 3k_BT/2$
- Random motion \rightarrow mean velocity v = 0
 - \circ can only deal with mean-square velocity v^2

$$\frac{1}{2}m\overline{v^2} = \frac{3k_BT}{2} \Longrightarrow v_{rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3k_BT}{m}}$$

Brownian Motion

TABLE 4.2. Values of the rms velocity for various particles at body temperature.

Particle	Molecular weight	Mass (kg)	$v_{\rm rms}$ (m s ⁻¹)
H_2	2	3.4×10^{-27}	1940
H_2O	18	3×10^{-26}	652
O_2	32	5.4×10^{-26}	487
Glucose	180	3×10^{-25}	200
$\operatorname{Hemoglobin}$	65000	1×10^{-22}	11
Bacteriophage	6.2×10^6	1×10^{-20}	1.1
Tobacco mosaic			
virus	40×10^6	6.7×10^{-20}	0.4
$E. \ coli$		2×10^{-15}	0.0025

- Brownian motion of particles: collisions
- Mean Free Path
 - Average distance between successive collisions
- Collision Time
 - Average time between successive collisions

- Consider N(x) to be number of particles without collision after a distance x
- For short distances *dx*, probability of collision is proprtional to *dx*

$$dN = N(x)\left(\frac{1}{\lambda}\right)dx \rightarrow N(x) = N_0 e^{-x/\lambda}$$

Average distance = mean free path

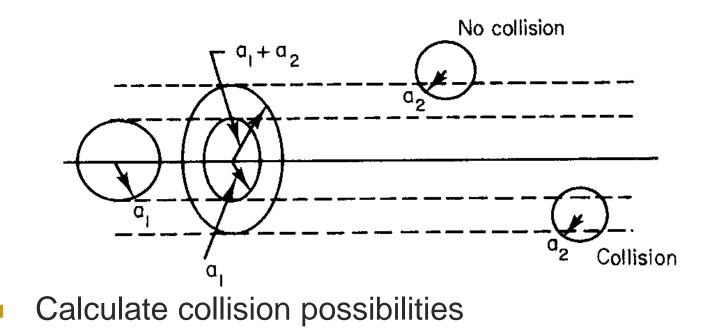
$$\overline{x} = \frac{1}{N_o} \int_0^\infty x \frac{N(x)}{\lambda} dx = -\lambda \left[e^{-x/\lambda} \left(\frac{x}{\lambda} + 1 \right) \right]_0^\infty = \lambda$$

Similar argument can be made for time

$$N(t) = N_0 e^{-t/t_c}$$

• Collision time = t_c

- Need to evaluate λ and t_c
- Consider one particle moving with a radius a₁
- Consider stationary particles with radius a₂



After moving a distance x, volume covered is given by,

$$V(x) = \pi (a_1 + a_2)^2 x$$

- On average, when a particle travels mean free path, there is one collision
 - Average number of particles in V(λ)=1

• Concentration = $1/V(\lambda)$

$$C = 1/V(\lambda) = 1/\pi(a_1 + a_2)^2 \lambda \Longrightarrow \lambda = \frac{1}{\pi(a_1 + a_2)^2 C}$$

- Collision *Cross Section* is $\pi(a_1 + a_2)^2$
 - Important for radiation interaction
- Example: gas at STP, volume of 1 mol = 22.4 L (C= 2.7×10²⁵m⁻³), a₁=a₂=0.15 nm
 - ο λ**=0.13** μm
 - 1000 times the molecular size
 - Assumption of infrequent collisions justified

Given mean free path λ,

$$t_c = \frac{\lambda}{\overline{v}}$$

Taking the average speed as v_{rms},

$$t_c \approx \lambda \left(\frac{m}{3k_BT}\right)^{1/2}$$

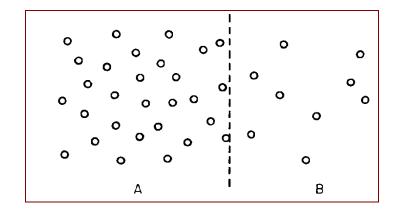
- Dependence on $m^{\frac{1}{2}}$ and λ
- For air and room temperature, $t_c = 2 \times 10^{-10}$ s

Motion in a Liquid

- Direct substitution in Gas equations?
- For water,
 - \circ λ=a=0.1 nm → assumption broken
 - $t_c \sim 10^{-13}$ s → much more frequent
 - Wrong calculations
 - However, concept appears to be valid!

Diffusion: Fick's First Law

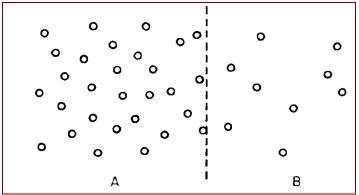
- Diffusion: random movement of particles from a region of higher concentration to a region of lower concentration
- Diffusing particles move independently
- Solvent at rest
 - Solute transport



Diffusion: Fick's First Law

- If solute concentration is uniform, no net flow
- If solute concentration is different, net flow occurs

$$j_x = -D\frac{\partial C}{\partial x}$$



D: Diffusion constant (m²s⁻¹)

Diffusion: Fick's First Law

TABLE 4.3. Various forms of the transport equation.

		1	-
Substance			Units of
flowing	Equation	Units of j	the constant
Particles	$j_s = -D rac{\partial C}{\partial x}$	$m^{-2} s^{-1}$	$m^2 s^{-1}$
Mass	$j_m = -D \frac{\partial C}{\partial x}$	$\mathrm{kg}~\mathrm{m}^{-2}~\mathrm{s}^{-1}$	$\mathrm{m}^2~\mathrm{s}^{-1}$
Heat	$j_H = -\kappa \frac{\partial T}{\partial x}$	$\mathrm{J~m^{-2}~s^{-1}}$ or kg s ⁻³	J K ⁻¹ m ⁻¹ s ⁻¹
Electric charge	$j_e = -\sigma \frac{\partial V}{\partial x}$	$C m^{-2} s^{-1}$	C m ⁻¹ s ⁻¹ V ⁻¹ or Ω^{-1} m ⁻¹
Viscosity (y component of momentum transported in the x			
direction)	$\frac{F}{S} = -\eta \frac{\partial v_y}{\partial x}$	${\rm N}~{\rm m}^{-2}$ or	$\rm kg~m^{-1}~s^{-1}$
		$\mathrm{kg}~\mathrm{m}^{-1}~\mathrm{s}^{-2}$	or Pa s

Diffusion: Fick's Second

Consider 1D case

Fick's first law

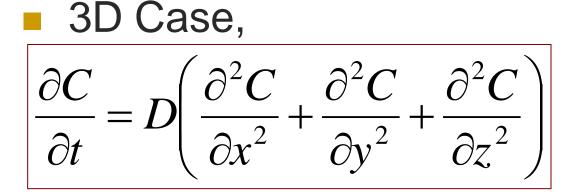
$$j_x = -D\frac{\partial C}{\partial x}$$

Continuity equation

$$\frac{\partial C}{\partial t} = -\frac{\partial j}{\partial x}$$

Diffusion: Fick's Second Law

Combining Fick's first law and continuity equation,



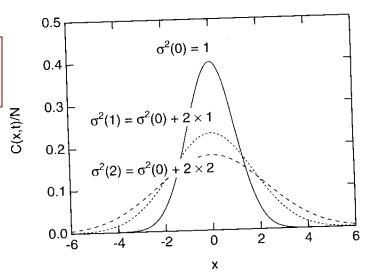
Diffusion: Fick's Second Law

Solving Fick's second law for C(x,t)

Substitution

$$C(x,t) = \frac{N}{\sqrt{2\pi}\sigma(t)} e^{-x^2/2\sigma^2(t)}$$

where, $\sigma^2(t) = 2Dt + \sigma^2(0)$



Applications

- Kidney dialysis
- Tissue perfusion
- Blood oxygenation in the lung

Problem Assignments

Information posted on web siteProblems 1, 4, 5, 6, 8, 18, 19