Medical Equipment I - 2009 Chapter 6

Professor Yasser M. Kadah

Web: http://ymk.k-space.org/courses.htm

Physiology of Nerve and Muscle Cells

- Action potential Transmitted through axon o no change in shape Myelinated/unmyelinated nerve fibers Nodes of Ranvier Speed of conduction
- Coding using repetition

Physiology of Nerve and Muscle Cells

- Synapse or junction
	- Ach neurotransmitter packets (quanta)
- Extra-/intra- cellular fluids ion concentrations Inside of axon
	- Nernst potential ?
	- Permeability ?

Coloumb's Law, Superposition and Electric Field

Electrical force

- **Superposition**
- Electric field

Gaussian surface: sphere

$$
\iint_{\Gamma_n} dS = E \iint dS = E 4\pi r^2 = \frac{q}{\varepsilon_o} \Rightarrow E = \frac{q}{4\pi \varepsilon_o r^2}
$$

Gauss's Law

Example: infinitely long line of charge

- Gaussian surface: cylindrical surface
- \circ Charge density λ C/m

$$
E2\pi rL = \frac{\lambda L}{\varepsilon_o} \Rightarrow E = \frac{\lambda}{2\pi r\varepsilon_o}
$$

Gauss's Law

- Example: Sheet of charge
	- Gaussian surface: cylinder
	- \circ Charge density: σ C/m²

$$
E(2S) = \frac{\sigma S}{\varepsilon_o} \Rightarrow E = \frac{\sigma}{2\varepsilon_o}
$$

Gauss's Law

 Example: Two infinite sheets of charge

Cell membrane

Potential Difference

 Potential energy difference per unit charge

Conductors

 Electric charges are free to move No electric field inside No work is required to move charges Same potential if charges are not moving

$$
t = \frac{\frac{\sigma}{\epsilon_0} + \frac{\sigma}{\epsilon_0}}{1 + \frac{\sigma}{\epsilon_0} + \frac{\sigma}{\epsilon_0}} + \frac{\frac{\sigma}{\epsilon_0}}{\epsilon_0} + \frac{\frac{\sigma}{
$$

Capacitance

■ Capacitance C (F) $C₁$

b

$$
v = -Eb = \sigma b/\varepsilon_o
$$

$$
C = \frac{Q}{v} = \frac{\sigma S \varepsilon_o}{\sigma b} = \frac{\varepsilon_o S}{b}
$$

Dielectrics

Charges not free to move

- Polarization field only
- Partial cancellation inside

 (b)

Current and Ohm's Law $v(B)$ $V(A)$ $v = v(B) - v(A)$ Ohm's law Battery to maintain the potential $\nu = Ri \Leftrightarrow i = G\nu$ difference (a) 1 *L* ρ $\mathbf{j} = \mathbf{d}\mathbf{E} = \mathbf{\dot{-}E}$ $=\sigma E =$ $=$ *R* v. *S* $\boldsymbol{\rho}$ (b) Power 2 *v* $P = i^2 R =$ $|_{(b)}$ ده ا *R* (d) (c)

Application of Ohm's Law to Simple Circuits

 Kirchhoff's first law Conservation of charge Kirchhoff's second law Conservation of energy

Charge Distribution in Resting Nerve Cell

- Membrane potential -70mV
- Nernst potential
	- Na 30mV, K -90mV, Cl -70
	- Permeability ??
- Membrane capacitance
	- $k=7$,
	- b=6nm (mye), 2000nm (unmye)
	- 1μ F/cm² (mye), lower by 300 (unmye)
	- \circ σ = 700 μ C/m²

- Need to model the complicated flow of charge between inside and outside
- Model a small segment of an axon

 (b)

 (c)

Assume no current along the axon

$$
v(t) = v_o e^{-t/\tau}
$$

$$
\tau = R_{m}C_{m} = \frac{\rho_{m}b}{S} \frac{\kappa \varepsilon_{o}S}{b} = \kappa \varepsilon_{o}\rho_{m}
$$

 (a)

 (b)

 (c)

■ Dividing by area S=
$$
2 \pi a dx
$$

\n
$$
\frac{1}{2\pi a} \frac{di_i}{dx} = c_m \frac{dv}{dt} + j_m
$$

- By substitution, Cable Equation 2 2 2 1 *dx v ar i j t v* $c_m \frac{cv}{2} = -j_m +$ \widehat{O} ∂ \widehat{O} П
	- Similarity to Fick's second law

Electrotonus or Passive Spread

Membrane assumed ohmic

Valid for small changes

$$
j_m = g_m(v - v_r)
$$

Substitute into Cable Equation

$$
\frac{1}{2\pi a r_i g_m} \frac{\partial^2 v}{\partial x^2} - v - \frac{c_m}{g_m} \frac{dv}{dt} = -v_r \Rightarrow \frac{\partial^2 v}{\partial x^2} - v - \tau \frac{dv}{dt} = -v_r
$$

Electrotonus or Passive Spread

Special case 2: no dependence on x

$$
\left|\tau \frac{dv}{dt} = -(\nu - \nu_r)\right| \quad \Rightarrow \quad \boxed{\nu - \nu_r = \nu_o e^{-t/\tau}}
$$

Hudgkin-Huxley Model for Membrane Current

Myelinated Fibers and Saltatory Conduction

TABLE 6.2. Properties of unmyelinated and myelinated axons of the same radius

Myelinated Fibers and Saltatory Conduction

Problem Assignment

Problems 1, 2, 3, 5, 6, 10, 12, 13, 18, 19, 20, 21, 22, 24, 25, 27, 31, 32, 60