

TRENDS IN MEDICAL IMAGING

Yasser M. Kadah, Ph.D.

Professor, Cairo University

Medical Equipment I Part II (2009)

Objective

 Provide an overview of medical imaging to promote student interest and knowledge of its basic ideas and clinical applications

Contents

- Basic Ideas of Medical Imaging
- Brief history
- How it works: Examples for ultrasound, x-ray and MRI
- Applications
 - Imaging of anatomy
 - Imaging of flow
 - Imaging of function
 - Imaging of chemical composition
 - Image-guided interventions
- Challenges for biomedical imaging

Basic Ideas of Imaging

- To use a means to measure and map a useful property of the human tissues
- Non-invasive or minimally-invasive
- Examples:
 - Reflection photography, ultrasound
 - Transmission x-rays
 - Radiation MRI, PET/SPECT

Imaging Methods

 A variety of energy sources can be used to measure one or many tissue properties

Energy Sources	Tissue Properties	Image Properties
X rays	Mass density	Transmissivity
γ rays	Electron density	Opacity
Visible light	Proton density	Emissivity
Ultraviolet light	Atomic number	Reflectivity
Annihilation	Velocity	Conductivity
Radiation	Pharmaceutical	Magnetizability
Electric fields	Location	Resonance
Magnetic fields	Current flow	Absorption
Infrared	Relaxation	
Ultrasound	Blood volume/flow	
Applied voltage	Oxygenation level of blood	
_	Temperature	
	Chemical state	

- In the 1800s and before, physicians were extremely limited in their ability to obtain information about the illnesses and injuries of patients.
 - They relied essentially on the five human senses

- 1895: physicist Wilhelm Röntgen, discovered x-rays
- A few months later, the use of x-rays in medical application started in several places

Poster for a public demonstration of x rays, 1896, Crystal Place Exhibition, London and an advertisement for x-ray studio

Creat Reduction IS PRICE OF HIGH CRADE X STATIC MACHINES, CALVANIC, Portable, Dry Cell. COMBINATION Batteries, Cabinets, Wall and Table Prates, Switchboards, Cautery and Illumination Batteries, Rhoostats. Meters and Electrodes. Our new Catalogue Xo. S will be sent free on application. Electro-Medical Mfg, Co.

"THROUGH A BLOCK OF WOOD"

AND ASSOCIATION OF NO. S will be sent ree on application.

D-Medical Mfg. Co., rhern St., Chicago, Ill.

X RAY PHOTOGRAPHS TAKEN.

First x-ray "movie" showing 5 views of a frog's leg

- 1972: CT was invented by Godfrey Hounsfield of EMI Laboratories
- 1989: Spiral CT was introduced

- WW-I: Sonar
- 1942: ultrasound in medicine
- 1963: Real-time ultrasound

- 1946: Felix Bloch and Edward M. Purcell independently described the NMR phenomenon
- 1973: Magnetic resonance imaging was first demonstrated on small test tube samples by Paul Lauterbur.

Plain X-Ray Imaging

X-Ray Imaging Applications and Limitations

Computerized Tomography (CT)

Collect enough information to estimate and

map x-ray attenuation

CT: Back-Projection Method

- Start from a projection value and back-project a ray of equal pixel values that would sum to the same value
- Back-projected ray is added to the estimated image and the process is repeated for all projection points at all angles
- With sufficient projection angles, structures can be somewhat restored

Ultrasound Imaging

- Acoustic energy is sent through the body
- Reflected energy is detected and used to construct an image

Ultrasound Imaging

Patient

Image on Monitor

Ultrasound Imaging Applications and Limitations

Magnetic Resonance Imaging (MRI)

Applications of Medical Imaging

- Imaging of Anatomy
 - How internal organs look like
- Imaging of Flow
 - How blood vessels are doing
- Imaging of Function
 - How physiology is doing
- Imaging of Chemical Composition
 - Biochemical analysis of a location noninvasively
- Image Guided Interventions
 - Operation prepared or done using imaging

Imaging of Anatomy

Imaging of Blood Flow: MRA

- Time-of-flight or phase contrast
- Velocity encoding for quantitative results
- Can be done with or without contrast agents
- MIP visualization

Imaging of Blood Flow: X-ray

- Contrast agent must be injected
- Digital subtraction angiography

Imaging of Blood Flow: Ultrasound

- Doppler effect
- Spectrogram display
- Color flow mapping
 - Spatial resolution vs. velocity accuracy

Imaging of Function: Blood Oxygen Level Dependent (BOLD)

Map changes with a physiological function

Neuronal activation mapping

Imaging of Function: Perfusion

- increases when cells are at work
- measured using MRI or ultrasound

Imaging of Function: PET

- Radioactive isotopes related to a particular function (biomarkers)
 - e.g., Iodine necessary for thyroid
- Radioactive decay with positron generation (measured and mapped)

Detector array

Imaging of Function: Cardiac MRI

- SPAMM tagging
- Tag tracking
- Quantitative wall viability assessment
- Fast and accurate analysis is a challenge

Imaging of Chemical Composition: MR Spectroscopy

- Quantitative measurement of different metabolites in a specific area in the image
- Multiple nuclei
 - e.g., Hydrogen, Phosphorus, etc

Image-Guided Interventions

- Image-guided surgical planning
 - Minimally invasive brain surgeries
- Image-guided surgical procedures
 - Cathlab
 - Needle-Biopsy

Image-Guided Interventions: Hardware Limitations

- Special surgical tools
- Custom suite designs
- Custom imaging equipment

Biomedical Imaging Trends

From

- Anatomic
- Static
- Qualitative
- Analog
- Nonspecific agents
- Diagnosis

To

- Physiobiochemical
- Dynamic
- Quantitative
- Digital
- Tissue-Targeted agents
- Diagnosis/Therapy

Summary

- Medical imaging is both a science and a tool to explore human anatomy and to study physiology and biochemistry.
- Medical imaging employs a variety of energy sources and tissue properties to produce useful images.
- Increasingly, clinical pull is the driving force in the development of imaging methods.
- Pushing the limits of resolution and accuracy is the focus of current research in this area
- Molecular biology and genetics are new frontiers for imaging technologies.

