
Medical Equipment I - 2010 Chapter 15

Professor Yasser M. Kadah

Web: http://ymk.k-space.org/courses.htm

Photon Interactions

- A number of different ways in which a photon can interact with an atom
- Notation: (γ, bc)
 - γ: incident photon
 - b and c are the results of the interaction
 - Ex1: (γ, γ) initial and final photons of same energy
 - Ex2: (γ, e) photon absorbed and electron emerges.

Photoelectric Effect

- Photon is absorbed by the atom and a single electron is ejected (γ, e)
- Initial photon energy $h\nu_0$ is equal to the final energy

$$h\nu_0 = T_{\rm el} + B.$$

- \circ T_{e} : Kinetic energy of electron, B: binding energy
- Photoelectric cross section is τ .

-Compton and Incoherent Scattering

 Original photon disappears and photon of lower energy and electron emerge. (γ, γ' e)

$$h\nu_0 = h\nu + T_{\rm el} + B.$$

- Compton cross section for scattering from a single electron is σ_C .
- Incoherent scattering is Compton scattering from all the electrons in the atom, with cross section σ_{incoh} .

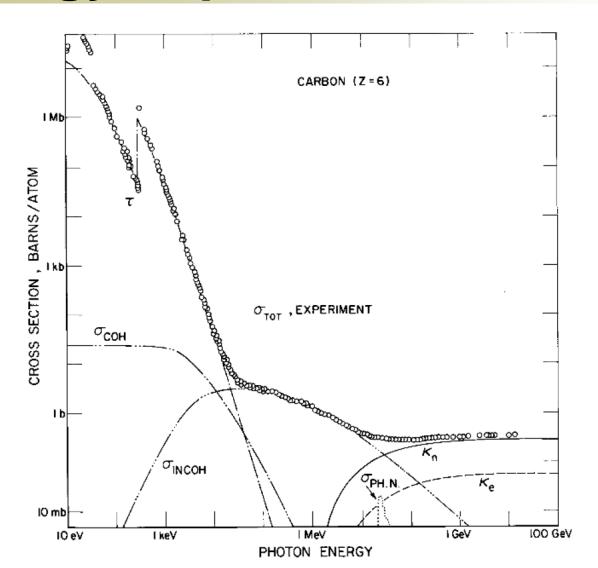
- Photon is elastically scattered from the entire atom.
 - Internal energy of atom does not change
 - Equal energy of incident and scattered photons

$$h\nu_0 = h\nu.$$

Cross section for coherent scattering is σ_{coh} .

Inelastic Scattering

- Final photon with different energy from the initial photon (γ , γ') without emission of electron.
 - Internal energy of target atom increases or decreases by a corresponding amount.
 - Examples: fluorescence and Raman scattering
 - o In fluorescence, $(\gamma, \gamma' \gamma'')$, $(\gamma, 2\gamma)$, $(\gamma, 3\gamma)$ possible


Pair Production

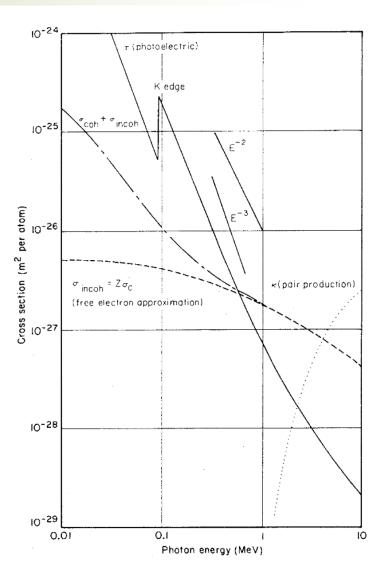
- High energy (γ,e⁺ e⁻) interaction
- Since it takes energy to create negative electron and positive electron or positron, their rest energies must be included in the energy balance

$$h\nu_0 = T_+ + m_e c^2 + T_- + m_e c^2 = T_+ + T_- + 2m_e c^2.$$

Cross section for pair production is κ .

Energy Dependence

Photoelectric Effect


- (γ , e) Photon interaction $h\nu_0 = T_{\rm el} + B$
 - \circ T_{el} : Kinetic energy of electron, B: binding energy
- Binding energy depends on shell
 - \circ B_K , B_L , and so on.
- Photoelectric cross section is τ .

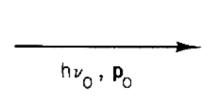
$$\tau = \tau_K + \tau_L + \tau_M + \cdots.$$

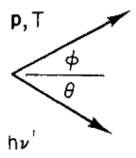
Photoelectric Effect

- For photon energies too small to remove an electron from the K shell, τ_K is zero.
 - K edge
 - Can still remove L electron
- Model around 100 KeV:

$$au \propto Z^4 E^{-3}$$
.

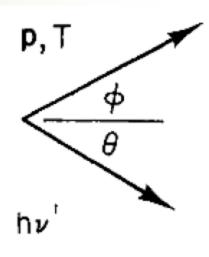
•Compton Scattering: **Kinematics**


- (γ , γ' e) photon interaction $h\nu_0 = h\nu + T_{\rm el} + B$.
- Photon kinematics: Special relativity


$$E^2 = (pc)^2 + (m_0c^2)^2$$
. $E = h\nu = pc$.

$$E = h\nu = pc.$$

Conservation of energy and momentum can be used to derive angle and energy of scattered photon



-Compton Scattering: Kinematics

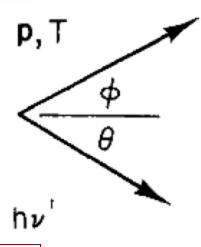
Conservation of momentum in direction of the incident photon:

$$\frac{h\nu_0}{c} = \frac{h\nu'}{c}\cos\theta + p\cos\phi$$

Conservation of momentum at 90°

$$\frac{h\nu'}{c}\sin\theta = p\sin\phi.$$

Conservation of energy


$$h\nu_0 = h\nu' + T.$$

-Compton Scattering: **Kinematics**

Electron energy:

$$E = T + m_e c^2$$

Combining with special relativity:

$$E^2 = (pc)^2 + (m_0c^2)^2.$$

$$E^2 = (pc)^2 + (m_0c^2)^2$$
. $(pc)^2 = T^2 + 2m_ec^2T$.

- Solve 4 equations in 4 unknowns
 - \circ Unknowns: T, ν ', θ , ϕ

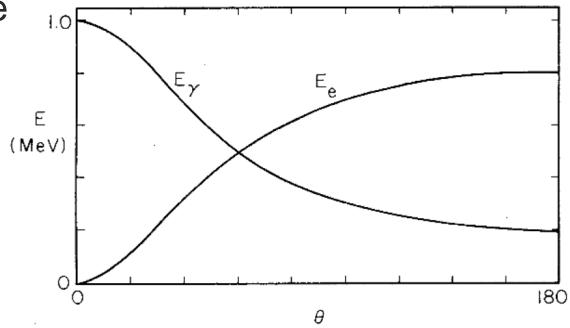
Compton Scattering: **Kinematics**

Wavelength of scattered photon:

$$\lambda' - \lambda_0 = \frac{c}{\nu'} - \frac{c}{\nu_0} = \frac{h}{m_e c} (1 - \cos \theta).$$

- Difference is independent of incident wavelength
- Compton length of electron $|h/m_ec|$
- Energy of scattered photon

$$h\nu' = \frac{m_e c^2}{1 - \cos\theta + 1/x}$$
 $x = \frac{h\nu_0}{m_e c^2}.$


$$x = \frac{h\nu_0}{m_e c^2}.$$

-Compton Scattering: Kinematics

Energy of recoil electron

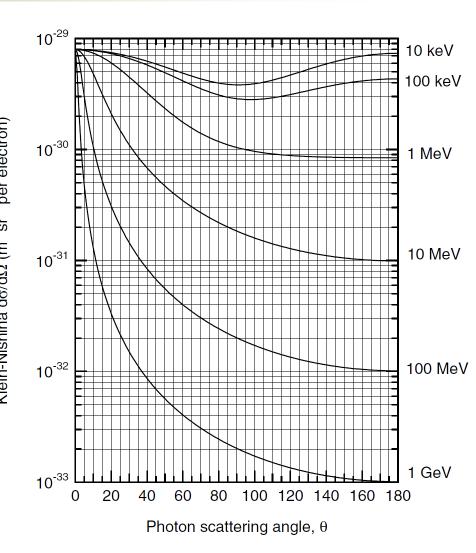
$$T = \frac{h\nu_0(2x\cos^2\phi)}{(1+x)^2 - x^2\cos^2\phi} = \frac{h\nu_0x(1-\cos\theta)}{1+x(1-\cos\theta)}.$$

Dependence on angle θ

Compton Scattering: Cross Section

- Compton cross section σ_{C}
- Quantum mechanics: Klein–Nishina Formula

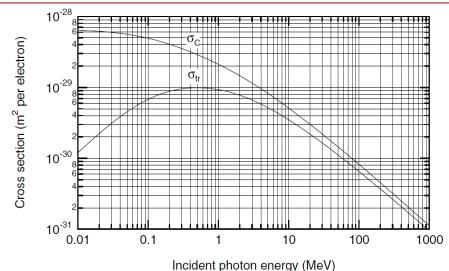
$$\frac{d\sigma_C}{d\Omega} = \frac{r_e^2}{2} \left[\frac{1 + \cos^2\theta + \frac{x^2(1 - \cos\theta)^2}{1 + x(1 - \cos\theta)}}{[1 + x(1 - \cos\theta)]^2} \right]$$


Classical radius of electron

$$r_e = \frac{e^2}{4\pi\epsilon_0 m_e c^2} = 2.818 \times 10^{-15} \text{ m},$$

-Compton Scattering: **Cross Section**

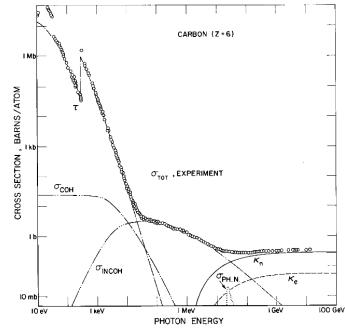
- σ_{C} peaked in the forward direction at high energies. As $x \to \mathcal{O}$ (low energy): $\frac{r_e}{\Omega} = \frac{r_e^2(1+\cos^2\theta)}{2}$
- As $x \to 0$ (low


$$\frac{d\sigma_C}{d\Omega} = \frac{r_e^2(1+\cos^2\theta)}{2}$$

Cross Section

Integrated over all angles

$$\sigma_C = 2\pi r_e^2 \left[\frac{1+x}{x^2} \left(\frac{2(1+x)}{1+2x} - \frac{\ln(1+2x)}{x} \right) + \frac{\ln(1+2x)}{2x} - \frac{1+3x}{(1+2x)^2} \right].$$
 (15.19)

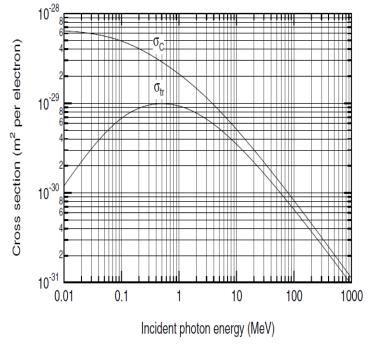

-Compton Scattering: Incoherent Scattering

- σ_C is for a single electron.
- For an atom containing Z electrons, maximum value of σ_{incoh} occurs if all Z electrons take part

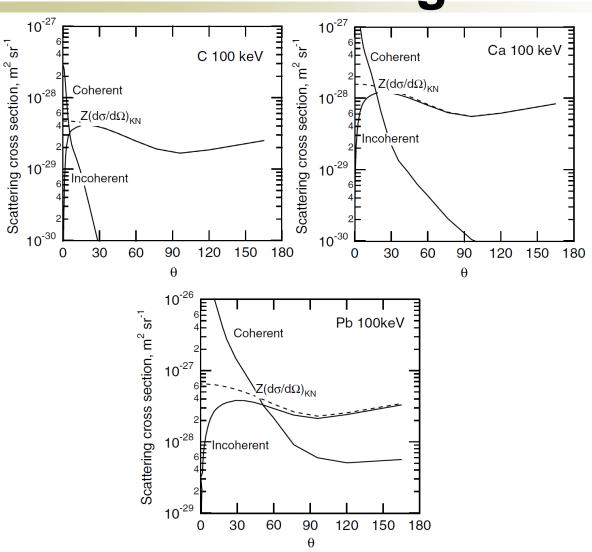
in Compton scattering

$$\sigma_{\mathrm{incoh}} \leq Z\sigma_C$$
.

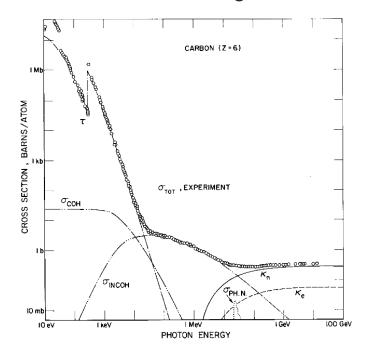
For carbon, equality near 10 keV.



Compton Scattering: Energy Transferred to Electron


Integrating T equation over all angles

$$\sigma_{\rm tr} = \int_0^{\pi} \frac{d\sigma_C}{d\Omega} \frac{T(\theta)}{h\nu_0} 2\pi \sin\theta \, d\theta = f_C \sigma_C.$$


$$\sigma_{\text{tr}} = 2\pi r_e^2 \left[\frac{2(1+x)^2}{x^2(1+2x)} - \frac{1+3x}{(1+2x)^2} - \frac{(1+x)(2x^2-2x-1)}{x^2(1+2x)^2} - \frac{4x^2}{3(1+2x)^3} - \left(\frac{1+x}{x^3} - \frac{1}{2x} + \frac{1}{2x^3} \right) \ln(1+2x) \right].$$

- (γ, γ) photon interaction.
- Primary mechanism is oscillation of electron cloud in the atom in response to the electric field of the incident photons.
- Cross section for coherent scattering is σ_{coh} .
 - σ_{coh} peaked in the forward direction because of interference effects between EM waves scattered by various parts of the electron cloud.
 - Peak is narrower for elements of lower atomic number and for higher energies.

- If wavelength of incident photon >> size of the atom, all Z electrons behave like a single particle with charge -Ze and mass Zm_e.
 - Limit is almost $Z^2 \sigma_c$

Pair Production

High energy (γ,e⁺ e⁻) interaction

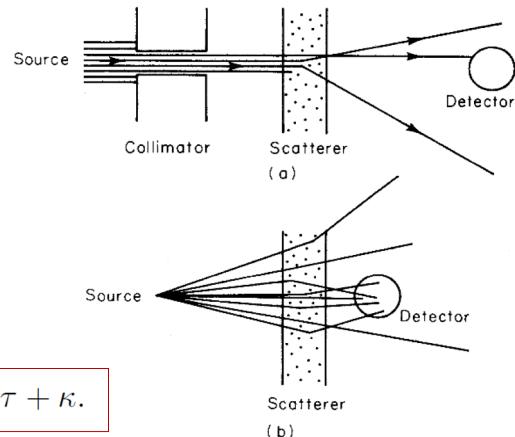
$$h\nu_0 = T_+ + m_e c^2 + T_- + m_e c^2 = T_+ + T_- + 2m_e c^2.$$

- One can show that momentum is not conserved by the positron and electron if the former equation is satisfied.
 - Interaction takes place in the Coulomb field of another particle (usually a nucleus) that recoils to conserve momentum.
 - Cross section for pair production involving nucleus is κ_n .

Pair Production

- Pair production with excitation or ionization of the recoil atom can take place at energies that are only slightly higher than the threshold
 - Cross section does not become appreciable until the incident photon energy exceeds 2.04 MeV
 - A free electron (rather than a nucleus) recoils to conserve momentum.
 - o $(\gamma, e^+ e^- e^-)$ process : Triplet production.
- Total cross section: $\kappa = \kappa_n + \kappa_e$

Linear Attenuation Coefficient


- Narrow- vs. Broad-beam geometries
 - Idealization ?

$$dN = -\frac{\sigma_{\text{tot}} N_A \rho}{A} N dz,$$

$$N(z) = N_0 e^{-\mu_{\text{atten}} z}.$$

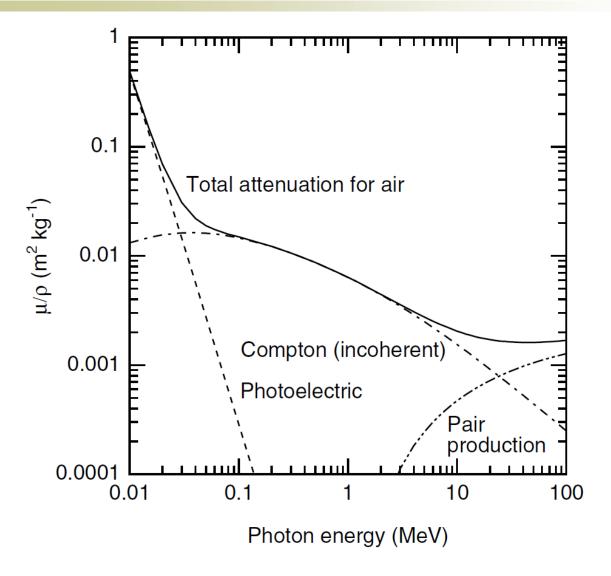
$$\mu_{\text{atten}} = \frac{N_A \rho \sigma_{\text{tot}}}{A}.$$

$$\sigma_{\rm tot} = \sigma_{\rm coh} + \sigma_{\rm incoh} + \tau + \kappa.$$

Mass Attenuation Coefficient

- Mass attenuation coefficient
 - Independent of density: very useful in gases

$$\frac{\mu_{\text{atten}}}{\rho} = \frac{N_A \sigma_{\text{tot}}}{A}.$$



$$\frac{\mu_{\text{atten}}}{\rho} = \frac{N_A \sigma_{\text{tot}}}{A}.$$
 $N(\rho z) = N_0 e^{-(\mu_{\text{atten}}/\rho)(\rho z)}.$

 Additional advantage in incoherent scattering: Z/A is nearly ½ for all elements except H¹: minor variations over periodic table

$$\frac{\mu_{\text{atten}}}{\rho} = \frac{Z\sigma_C N_A}{A}$$

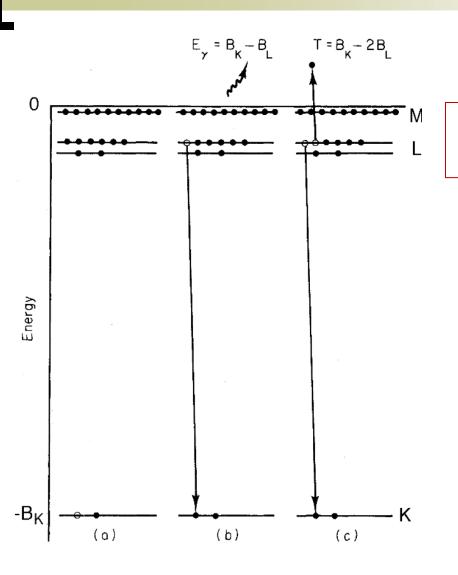
Mass Attenuation Coefficient

Compounds and Mixtures

Usual procedure for dealing with mixtures and compounds is to assume that each atom scatters independently.

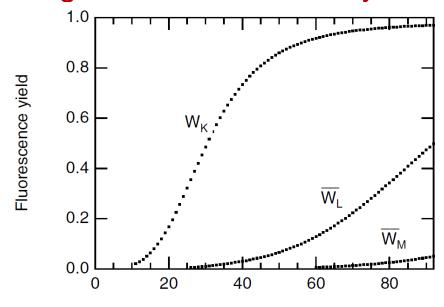
$$\frac{\overline{n}}{N} = \sum_{i} \sigma_i(N_T)_i = \left(\sum_{i} \sigma_i(N_{TV})_i\right) dz, \qquad (N_{TV})_i = \frac{M_i N_A}{A_i V} = \frac{w_i}{A_i} \rho N_A.$$

$$(N_{TV})_i = \frac{M_i N_A}{A_i V} = \frac{w_i}{A_i} \rho N_A.$$


$$\sum_{i} \sigma_{i}(N_{TV})_{i} = \left(\sum_{i} \frac{a_{i}\sigma_{i}}{A_{\text{mol}}}\right) \rho N_{A}$$
$$= \left(\sum_{i} a_{i}\sigma_{i}\right) \frac{\rho N_{A}}{A_{\text{mol}}} = \sigma_{\text{mol}}(N_{TV})_{\text{mol}}.$$

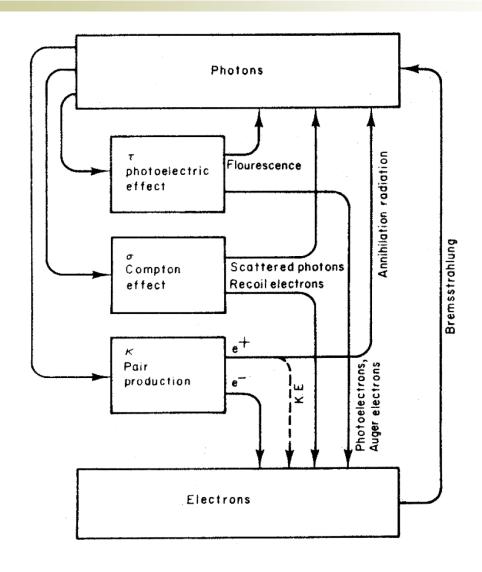
Compounds and Mixtures

- When a target entity (molecule) consists of a collection of subentities (atoms), we can say that in this approximation (all subentities interacting independently), the cross section per entity is the sum of the cross sections for each subentity.
 - For example, for CH4, total molecular cross section is $\sigma_{carbon} + 4\sigma_{hydrogen}$ and the molecular weight is $[(4 \times 1) + 12 = 16] \times 10^{-3}$ kg mol⁻¹


- Excited atom is left with a hole in some electron shell.
 - Similar state when an electron is knocked out by a passing charged particle or by certain transformations in the atomic nucleus
- Two competing processes:
 - Radiative transition: photon is emitted as an electron falls into the hole from a higher level,
 - Nonradiative or radiationless transition: emission of an Auger electron

<u> </u>			•	
Process	Total photon energy	Total electron energy	Atom excitation energy	Sum
Before photon strikes atom	$h\nu$	0	0	$h\nu$
After photoelectron is ejected [Fig. 15.12(a)]	0	$h\nu - B_K$	B_K	h u
Case 1: Deexcitation by the	emission of a	K and an L p	hoton	
Emission of K fluorescence photon [Fig. 15.12(b)]	$B_K - B_L$	$h\nu - B_K$	B_L	h u
Emission of L fluorescence photon	$B_K - B_L, B_L$	$h\nu - B_K$	0	h u
Case 2: Deexcitation by emis	ssion of an Au	ger electron fr	com the L shel	1
Emission of Auger electron [Fig. 15.12(c)]	0	$h\nu - B_K, B_K - 2B_L$	$2B_L$	$h\nu$
First L -shell hole filled by fluorescence	B_L		B_L	$h\nu$
Second L -shell hole filled by fluorescence	B_L, B_L	$h\nu - B_K, B_K - 2B_L$	0	h u

$$\Delta l = \pm 1, \qquad \Delta j = 0, \pm 1.$$

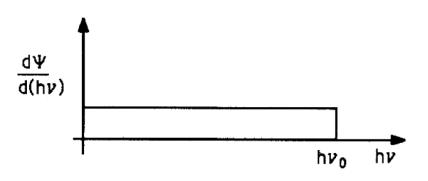

- Probability of photon emission is called the fluorescence yield, W_{K} .
 - Auger yield is $A_K = 1 W_K$.
 - L or higher shells: consider yield for each subshell

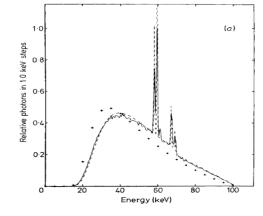
Ζ

- Coster–Kronig transitions
 - Radiationless transitions within the subshell
 - Hole in L_I-shell can be filled by an electron from the L_{III}-shell with the ejection of an M-shell electron
- Super-Coster–Kronig transitions
 - Involves electrons all within same shell (e.g., all M)
- Auger cascade
 - Bond breaking important for radioactive isotopes

Energy Transfer from Photons to Electrons

Bremsstrahlung


- Classically, a charged particle at rest creates an electric field which is inversely proportional to squared distance from charge.
- When in motion with a constant velocity it creates both electric and magnetic fields.
- When accelerated, additional electric and magnetic fields appear
 - fall off less rapidly—inversely with the first power of distance from charge with continuous distribution.


Bremsstrahlung

- Quantum-mechanically, when a charged particle undergoes acceleration or deceleration, it emits photons.
- Radiation is called deceleration radiation, braking radiation, or bremsstrahlung.

It has a continuous distribution of frequencies up

to some maximum value.

Problem Assignments

Information posted on web site

Web: http://ymk.k-space.org/courses.htm