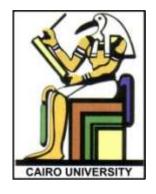
Medical Equipment I - 2010 Chapter 3

Professor Yasser M. Kadah

Web: http://ymk.k-space.org/courses.htm



Introduction

- Is it possible to use classical mechanics to describe systems of many particles?
- Example: particles in 1 mm³ of blood
 - Compute translational motion in 3D

$$v_i(t + \Delta t) = v_i(t) + F_i \Delta t / m$$
 , $(i = x, y, z)$

- 6 multiplications + 6 additions / particle
- For 10¹⁹ particle, 10²⁰ operations required/interval
- 10⁸ s (3 years) on a 1G operations/s computer !!

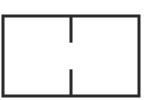
Statistical Mechanics

- Do not care about individual molecules
 - Impossible to trace practically
- Average macroscopic properties over many particles are what we need
- Such properties are studied under statistical physics / statistical mechanics
 - e.g., Pressure, Temperature, etc.
 - Average and probability distribution

- Total number of molecules = N
- Box with imaginary partition
- Particles in left half = n
- P(n) can be computed from an ensemble of boxes

- Example: N=1
 - \circ P(0)= 0.5, P(1)= 0.5
- Example: N=2

Molecule 1	Molecule 2	\overline{n}	P(n;2)
R	\mathbf{R}	0	$\frac{1}{4}$
\mathbf{R}	${f L}$	1	1
${f L}$	${ m R}$	1	$\frac{\tilde{2}}{2}$
${ m L}$	Γ	2	$\frac{1}{4}$



Example: N=3

Molecule 1	Molecule 2	Molecule 3	n	P(n;3)
R	R	R	0	$\frac{1}{8}$
R	\mathbf{R}	I,	1	O
\mathbf{R}	L	\mathbf{R}	1	$\frac{3}{8}$
L	\mathbf{R}	\mathbf{R}	1	
L	L	\mathbf{R}	2	
L	R	L	2	$\frac{3}{8}$
R	L	L	2	33.1
L	\mathbf{L}	L	3	$\frac{1}{8}$

Histogram representation

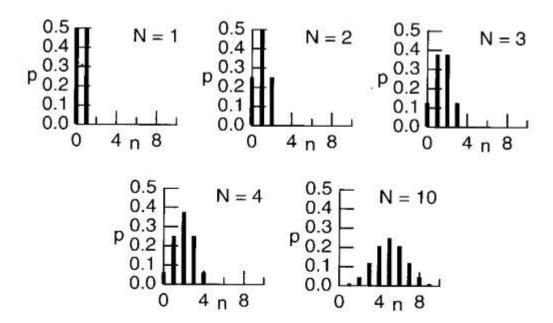


FIGURE 3.2. Histograms of P(n; N) for different values of N.

- General case: binomial distribution
- Assume a general box partitioning into two volumes v (left) and v' (right) such that p=v/V, q= v'/V, then p+q=1
- Probability of n particles in volume v given by

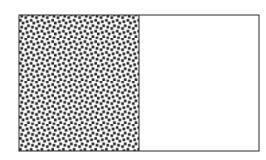
$$P(n; N, p) = \frac{N!}{n!(N-n)!} p^{n} (1-p)^{N-n}$$

Microstates and Macrostates

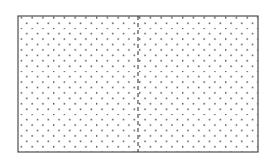
- Microstates: all information about a system
 - Position and velocity of all molecules
- Macrostates: average properties
 - Number of molecules in each half
- Example: Toys in a room
 - Microstate: position of every toy
 - Macrostate: "picked-up" or "mess"

Gas Box Example

Partition in between



- Partition suddenly removed
 - Many more microstates available
 - Improbable to remain all on left
 - Equilibium: half on each side
 - Macroscopic states not changing with time
 - Most random, most probable



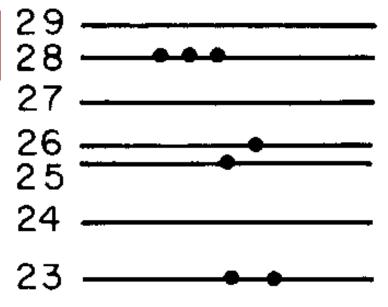
Microstates

- Energy levels defined by a set of quantum numbers = 3N (in 3D)
 - Discrete levels
- Total number of quantum numbers required to specify state of all particles is called degrees of freedom (f)
- Microstate: specified if all quantum numbers for all particles are specified

-First Law of Thermodynamics

Total energy U = sum of particle energies

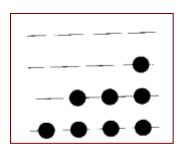
$$U = 2u_{23} + u_{25} + u_{26} + u_{28}$$

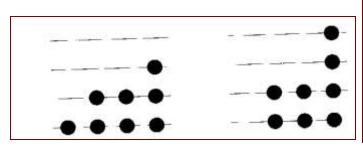


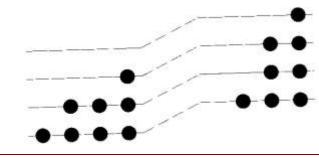
Exchange of Energy

Exachange forms: Work and Heat

$$\Delta U = Q - W$$

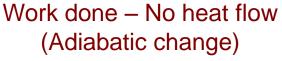


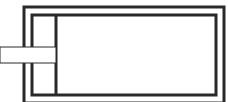




No work - No heat flow

No work - Heat added





Exchange of Energy

- Pure heat flow involves a change in the average number of particles in each level
 - No change in positions of levels
- Work involves a change in the macroscopic parameters
 - Change in positions of some levels
 - Change in average populations in levels
- General case: both heat flow and work
 - Sum of changes due to both

-Specifying Microstates and Macrostates

- Microstates
 - quantum numbers of each particle in the system
- Macrostates
 - All of external parameters
 - Total energy of the system

-Specifying Microstates and Macrostates

- Statistical physics: ensemble of identical systems
- At some instant of time, "freeze" ensemble

```
P(\text{microstate } i) = \frac{\text{Number of systems in microstate } i}{\text{Total number of systems in the ensemble}}
```

- "Unfreeze" then wait and repeat "freeze"
- Edgodicity:
 - Equivalence of time and ensemble averages

Basic Postulates

- 1. If an isolated system is found with equal probability in each one of its accessible microstates, it is in equilibrium
 - Converse is also true
- 2. If it is not in equilibrium, it tends to change with time until it is in equilibrium
 - Equilibrium is the most random, most probably state.

- Idealization: system that does not interact with surroundings
 - Adiabatic walls can never be realized
- Much can be learned by considering two systems that can exchange heat, work or particles but isolated from the rest of the universe
 - One of them is our system and the other can be taken to be the rest of the universe

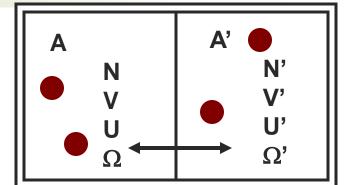
- Consider only heat flow
- Total system A*
 - Number of particles N*= N+N'
 - Total energy U*= U+U'
- Two systems can exchange heat
 - U and U' may change as long as U*= const

A'

 Barrier prevents exchange of particles or work

- Number of microstates
- Probability of microstate

- Example: system of 2 particles in A and A'
 - Total energy U*=10u
 - Possible energy levels for particles = 1u, 2u, ...



- Ex: U= 2u → U'= U*-U= 10u-2u= 8u
 - Possible A microstates: (1u,1u)
 - \circ $\Omega(U)=1$
 - Possible A' microstates: (1u,7u), (2u,6u),
 (3u,5u), (4u,4u), (5u,3u), (6u,2u), (7u,1u)
 - \circ $\Omega'(U)=7$

System A		System A'		System A^*	
\overline{U}	Ω	$\overline{U'}$	$\overline{\Omega'}$	Ω^*	
$\overline{2u}$	1	8u	7	7	
$\frac{1}{3}u$	2	7u	6	12	
4u	3	6u	5	15	
$\overline{5u}$	4	5u	4	16	
6u	5	4u	3	15	
7u	6	3u	2	12	
$\frac{1}{8u}$	7	2u	1	7	
<i>O</i> 0.				$\Omega_{\mathrm{tot}}^* = 84$	

Most probable value of U has max P(U)

$$\left| \frac{d}{dU} P(U) = \frac{d}{dU} \left[\frac{\Omega^*(U)}{\Omega_{tot}^*} \right] = \frac{1}{\Omega_{tot}^*} \frac{d}{dU} \left[\Omega^*(U) \right] = 0$$

$$\Omega^*(U) = \Omega(U) \cdot \Omega'(U^* - U)$$

$$\frac{d\Omega^{*}(U)}{dU} = 0 = \Omega \Omega' \left(\frac{1}{\Omega} \frac{d\Omega}{dU} - \frac{1}{\Omega'} \frac{d\Omega'}{dU'} \right)$$

$$\neq 0$$

$$= 0 \text{ for equilibrium}$$

Define a quantities τ and τ' with units of energy such that

$$\frac{1}{\tau} \equiv \frac{1}{\Omega} \frac{d\Omega}{dU}$$
 and $\frac{1}{\tau'} \equiv \frac{1}{\Omega'} \frac{d\Omega'}{dU'}$

- Equilibrium at $\tau = \tau'$,
 - related to absolute temperature

$$\tau = k_B T$$

- k_B = Boltzmann const= 1.38×10⁻²³ J K⁻¹
- T= absolute temperature K

Entropy

- Develop a condition for thermal equilibrium

$$\frac{1}{\tau} \equiv \frac{d}{dU} (\ln \Omega)$$

Define entropy S as

$$S = k_B \ln \Omega$$

$$\Omega = e^{S/k_B}$$

Entropy

Feature #1: temperature definition

$$\frac{dS}{dU} = \frac{k_B}{\tau} = \frac{1}{T}$$

Feature #2: entropy = sum of entropies

$$S* = S + S'$$

- Feature #3: max entropy at equilibrium
 - \circ Follows from max Ω^* at equilibrium
- Feature #4: entropy change related to heat flow

- Two isolated systems
 - In thermal contact
- Let system A be a single particle

A'

A

- Let system A' be a large system
 - o "reservoir"
- Transfer of energy → Number of microstates in A and A' change
 - Ratio of number of states ≡ G

- Consider system A has two different energies U_r and U_s
- Reservoir A' is very large
 - Its temperature T'remains the same
 - Has many energy levels
- Recall that $P(U) = \Omega^*(U) / \Omega^*_{tot}$
- Recall that $\Omega^*(U) = \Omega(U) \cdot \Omega'(U^* U)$

Then,

$$\frac{P(U_s)}{P(U_r)} = \frac{\Omega^*(U_s)}{\Omega^*(U_r)} = \frac{\Omega(U_s) \cdot \Omega'(U^* - U_s)}{\Omega(U_r) \cdot \Omega'(U^* - U_r)}$$

$$G = \frac{\Omega(U_s)}{\Omega(U_r)}$$

$$G = \frac{\Omega(U_s)}{\Omega(U_r)}$$
 and $R = \frac{\Omega'(U^* - U_s)}{\Omega'(U^* - U_r)}$

Recall that

$$\frac{1}{\tau} \equiv \frac{1}{\Omega} \frac{d\Omega}{dU}$$
 and $\frac{1}{\tau'} \equiv \frac{1}{\Omega'} \frac{d\Omega'}{dU'}$

- Equilibrium at $\tau = \tau'$,
 - related to absolute temperature

$$\tau' = k_B T'$$

- k_B = Boltzmann const= 1.38×10⁻²³ J K⁻¹
- T= absolute temperature K
- Consider solving the above equation for Ω '
 - T' is constant

$$\frac{1}{\Omega'} \left(\frac{d\Omega'}{dU'} \right) = \frac{1}{k_B T'} \Rightarrow \frac{d\Omega'}{dU'} = \left(\frac{1}{k_B T'} \right) \Omega'$$

Then,

$$\Omega'(U') = \text{constant} \times e^{U'/k_BT'}$$

Hence, at equilibrium T= T'

$$R = \frac{\text{constant} \times e^{(U^* - U_s)/k_B T'}}{\text{constant} \times e^{(U^* - U_r)/k_B T'}} = e^{-(U_s - U_r)/k_B T}$$

- R is called the "Boltzmann factor"
 - Factor by which the number of microstates in the reservoir decreases when the reservoir gives up energy U_s-U_r
- Relative probability of finding system A with energy U_r or U_s is given by

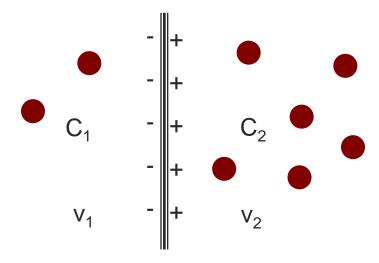
$$\frac{P(U_s)}{P(U_r)} = G \cdot R = \left[\frac{\Omega(U_s)}{\Omega(U_r)}\right] \cdot e^{-(U_s - U_r)/k_B T}$$

- G factor: "density of states factor"
 - Property of the system
 - Ex: single atom with discrete energy levels, G=1
 - Degeneracy: G may be different

Example 1: Nernst Equation

 Concentration of ions on the two sides of a semi-permeable membrane and its relation to the voltage across the membrane

$$\frac{P(2)}{P(1)} = \frac{C_2}{C_1}$$



Nernst Equation

- $U=E_k+E_p$ (E_k is the same)
 - Potential energy is $E_p = zev$
- Since $R=N_{A}K_{B}$ and $F=N_{A}e$

Nernst

Nernst Equation
$$v_2 - v_1 = \frac{RT}{zF} \ln \left(\frac{C_1}{C_2} \right)$$

-Example 2: Pressure variation in the atmosphere

- Atmospheric pressure decreases with altitude
- Potential energy: gravitational = $m \times g \times y$

$$\frac{C(y)}{C(0)} = e^{-mgy/k_BT}$$

Problem Assignment

Posted on class web site

Web: http://ymk.k-space.org/courses.htm