Medical Equipment I - 2010 Chapter 5

Professor Yasser M. Kadah

Web: http://ymk.k-space.org/courses.htm

Transport Through Neutral Membranes

- Membranes
- Osmotic Pressure
- Clinical Examples
- Applications: Artificial Kidney

Membranes

- Cells are surrounded by a membrane
 7-10 nm thick
- Permeable to a substance
 - Substance can pass freely through it
- Semipermeable
 - Only certain substances can get through it
- Permeant
 - Substance that can pass through

Membranes

Examples

- Straight pores
- Tortuous pores
- No pores; molecules dissolve
- Water motion: bulk flow
- Solute motion: random walk
- Effective motion: diffusion superimposed on bulk flow

Gas law

p_i ∨*⊤N<mark></mark>*

$$p_1 V^* = n_1^* RT = N_1^* k_B T$$

• N_1^* : # of molecules, n_1^* : # of moles Denote,

$$C_1 = \frac{N_1^*}{V^*}$$
 , $c_1 = \frac{n_1^*}{V^*}$

 $C_{l} \qquad C_{l}^{T} = C_{l}$ $p_{l} \qquad p_{l}^{T} = p_{l}$ $N_{l} \qquad N_{l}^{T}$ $V \qquad V^{T}$

 $N_{1}^{*} = N_{1} + N_{1}^{'}$

 \vee * = \vee + \vee ¹

Imagine volume V* divided into two subvolumes V,V'

- Pressure remains p_1 in both partitions
- Average number of molecules remain unchanged

$$p_1 = p_1' = C_1 k_B T = C_1' k_B T$$

Second species
 Cannot pass through

$$p = p_1 + p_2$$

$$p_1 = C_1 k_B T$$

$$p_2 = C_2 k_B T$$

 Total partial pressure for all species that cannot pass through the membrane is called osmotic pressure and denoted by π

$$\pi_2 = C_2 k_B T$$

Total pressure = driving pressure + osmotic pressure

$$p = p_d + \pi$$

There is no flow if the driving pressure is the same between the two sides of the membrane

Clinical Examples

Capillary model

 p_i

Pdi

 π_i

 $p_i = p_{di} + \pi_i$

$$p_o = p_{do} + \pi_o$$

(c) comparison of p_d inside and outside

Side

Venous

Arterial

 p_o

p_{do}

 π_{o}

Side

Edema

Abnormal collection of fluid inside tissue

Edema due to Heart Failure

Right heart failure
Swelling of legs
Left heart failure
Pulmonary edema
Root cause: Rising venous pressure

Nephrotic Syndrome, Liver **Disease and Ascitis**

Lower protein in blood Hypoproteinemia Several causes Nephrons leaking proteins Liver malfunction Ascitis (blocking of veins in the liver)

Distance along capillary (c) comparison of p_d inside and outside

Vein

-20

Artery

Edema of Inflammatory Reactions

 3 Steps
 Vasodilation
 Fluid exodation (plasma)
 Cellular migration
 Rise in osmotic pressure in extracellular space

Headaches in Renal Dialysis

- Capillary-brain barrier
 - Low permeability to urea
- Plasma urea ↓, temporary urea osmotic pressure inside brain ↑
- Water flows into brain causing cerebral edema, which can cause severe headache.
- Converse: inject into blood urea/manitol
 - Water flows from brain to blood
 - Emergency treatment for cerebral edema

Osmotic Diuresis

- Water and many solutes pass into nephron from the blood
- Net reabsorption occurs through the rest of the nephron
 - Most of water and variable for solutes
- Medium-weight molecules are not reabsorbed at all (e.g., manitol, glucose)
 - If they are present, water reabsorption is less
 - Increase in urine volume

The Artificial Kidney

The Artificial Kidney: Example

Let:

- *ωRT*= 5×10⁻⁶ m/s
- *S*= 2 m²
- *V*= 40 L
- Then,
 - ο *τ*= 1.1 h
- Dialysis typically takes hours
 - A number of τ must elapse
 - Larger molecules are slower
 - Not to cause cerebral edema and headache

Countercurrent Transport

(b) The flows are in opposite directions.

Problem Assignments

Information posted on web site