

Medical Equipment I Midterm Exam - November 2010 (Model Answer)

Solve as Much as You Can - Maximum Grade: 100 Points

Part I. Answer these questions by marking the best answer among the choices given (2.5 point each):

- 1. Artificial kidney filter membrane is ... to urea.
 - a) Permeable (*)
 - b) Semipermeable
 - c) Impermeable
- 2. Driving pressure is associated with the flow of ... through membranes.
 - a) semipermeable substances
 - b) permeants (*)
 - c) impermeable substances
- 3. In artificial kidney using cellophane membrane dialyzer, if ω RT is 10^{-5} m/s and body fluid volume is 50 liters, if the surface area of dialyzer is changed from 2 m² to 4 m², the treatment time will be ...
 - a) increased by a factor of 2
 - b) decreased by a factor of 2 (*)
 - c) decreased by a factor of 4
- 4. To transport a solute a long distance, ... would be the most efficient phenomenon to do that.
 - a) Solvent drag (*)
 - b) Perfusion
 - c) Diffusion
- 5. Fick's second law of diffusion can be driven from ...
 - a) Flux density and time
 - b) Fick's first law of diffusion and Einstein relationship
 - c) Fick's first law of diffusion and the conservation of mass (*)
- 6. The half-life time of the combined decay by three independent paths having the same decay constant of 1 s-1 is ...
 - a) 0.693 s
 - b) 0.231 s (*)
 - c) 0.347 s
- 7. The plot of the function $f(x) = x^{2.7}$ appears ... on a log-log plot.
 - a) linear (*)
 - b) piecewise linear
 - c) nonlinear
- 8. The plot of the function $f(x) = e^{2x}$ has an intercept of ... on a semi-log plot.
 - a) 0
 - b) 1(*)
 - c) x
- 9. Buoyancy force on aquatic animals in water is much less than that of terrestrial animals in air because ...
 - a) Density of aquatic animals is close to that of water (*)
 - b) Density of terrestrial animals is close to that of air
 - c) Volume of aquatic animals is much smaller than that of terrestrial animals
- 10. To reach double the diffusion distance, the diffusion time required must be ...
 - a) cut in half
 - b) increased to double
 - c) increased by 4 times (*)
- 11. Heavier particles in Brownian motion have kinetic energy that is ... lighter particles of smaller size.
 - a) higher than
 - b) lower than
 - c) the same as (*)

- 12. The First law of thermodynamics is equivalent to ...
 - a) Conservation of mass
 - b) Conservation of energy (*)
 - c) Thermal equilibrium
- 13. If the half-life of 99mTc is 6 hours, then it will reach ... of its initial rate after 12 hours.
 - a) half
 - b) third
 - c) quarter (*)
- 14. Headaches in renal dialysis can be reduced by ...
 - a) Reducing treatment time
 - b) Increasing treatment time (*)
 - c) Injecting urea in the blood
- 15. Consider a system with *N*>100 particles each having one of two states with probability 0.12 and 0.88 respectively. The total number of microstates in the system should be ...
 - a) 2*N*
 - b) 2^{N} (*)
 - c) < N
- 16. Increasing extracellular fluid volume resulting from net water flow from capillaries results in ...
 - a) Edema (*)
 - b) Osmotic fragility
 - c) Osmotic dieresis
- 17. Clearance of a metabolite from the plasma through the kidneys follows ... equation.
 - a) Exponential decay (*)
 - b) Linear decrease
 - c) Logistic
- 18. Stirring sugar in water dissolves sugar faster than not stirring due to the process of ...
 - a) Solvent drag (*)
 - b) Buoyancy forces
 - c) Diffusion
- 19. The conservation of mass leads to ...
 - a) Fick's first law
 - b) Continuity equation (*)
 - c) Newton's second law
- 20. For a gas at standard temperature and pressure, if the volume of 1 mol is 22.4 liters and the radius of its molecules is 0.2 nm, then the mean free path is ...
 - a) $0.13 \, \mu m$
 - b) 0.10 μm
 - c) $0.07 \, \mu m \, (*)$
- 21. A process in which the change in a quantity Q with respect to time is constant is called ...
 - a) An exponential curve
 - b) A quadratic curve
 - c) A linear curve (*)
- 22. To reach a diatance of 3 mm, the diffusion time required must be ... the time required for 1 mm.
 - a) 3 times
 - b) 2³ times
 - c) 32 times (*)
- 23. Countercurrent transport is preferred in hemodialysis because ...
 - a) It maintains a concentration difference along the whole path (*)
 - b) It maintains a very high concentration difference that decays along the path
 - c) It generates an additional diffusion energy

- 24. Ensuring essential communication in medical devices includes ...
 - a) people working harder to communicate with each other
 - b) employing redundant methods of communicating vital information (*)
 - c) a sufficiently loud auditory alarm signal
- 25. In the real world, the medical devices are demanded to ...
 - a) Have a limited user workload (*)
 - b) To be less rugged
 - c) To prioritize user input
- 26. People easily associate an turning a knob clockwise with an increase in the rate of gas flow because of ...
 - a) Operation training
 - b) Experience with similar devices
 - c) Conventional mapping (*)
- 27. Typing the wrong character using the keyboard of a medical device is considered as ...
 - a) Slip (*)
 - b) Lapse
 - c) Mistake
- 28. Identification of use-related hazards can be done through ...
 - a) Analysis of predecessor and similar devices (*)
 - b) User profiling
 - c) Defining use environments
- 29. One method for use-related hazard mitigation strategies can be ...
 - a) FMEA
 - b) Decision on whether risks are acceptable
 - c) Modification of intended use (*)
- 30. An important task in risk management after the product is marketed is to ...
 - a) Track sales volumes compared to predecessor devices
 - b) Track incidents of user complaints and device returns (*)
 - c) Conduct usability testing

Part II. Mark the following statement as either True (T) or False (F) (1 point each):

- 31. Entropy is maximum at equilibrium. (T)
- 32. The Boltzmann factor is a special case of the Nernst equation. (F)
- 33. Systems of many particles that are in equilibrium tend to change with time away from equilibrium. (F)
- 34. Isolation of an infectious compartment can be done using an isolation system based on laminar flow. (T)
- 35. Diffusion is the main mechanism for oxygen transport from capillaries to cells. (T)
- 36. Osmotic pressure has a value only when using semipermeable or impermeable membranes. (T)
- 37. For a process with multiple decay paths, overall decay constant is larger than the decay constant of any of its components. (T)
- 38. The rate of increase of a quantity in an exponential growth process is proportional to that quantity. (T)
- 39. It is not possible to use classical mechanics to describe systems of many particles. (T)
- 40. Diffusion happens as a result of Brownian motion and solvent drag of particles in a fluid. (F)
- 41. When the probability of one of the available microstate is 1, the system is at equilibrium. (F)
- 42. Static equilibrium is reached when the balance of translational forces in any direction become zero. (F)
- 43. Device user interface designs usually violate a human factors engineering guideline. (T)
- 44. Medical device users always receive complete and proper training before using a given device. (F)
- 45. Designers should treat warnings as the main option for preventing problems in medical devices. (F)
- 46. Mistakes arise from applying the wrong knowledge when making a decision. (T)
- 47. After implementing design change to mitigate a risk, new risks may arise as a result of this change. (T)

Part III. Solve the following problems [10 points each]:

48. **[10 points]** Consider the problem of gas exchange between blood and air in alveoli. If the average radius for alveoli is 120 μm and that for capillaries is 5 μm and given that the diffusion constant in air is 2×10⁻⁵ and in water is 2×10⁻⁹ m²s⁻¹, calculate time required for oxygen to diffuse from the center of an alveolus to the center of a blood capillary in contact with it in case of a patient with lung edema. Assume the lung edema to cause an additional small layer of fluid of thickness 1 μm between the capillary and the lung alveolus in contact with it. Assume also that the diffusion constants in blood and extracellular fluid are the same as that of water.

Solution: Same steps as problem 4.18 with only an added layer of the extra fluid between the alveolus surface and the capillary

49. **[10 points]** The potential energy of hydrogen nuclei in a magnetic field can be given as $(\gamma m B h/2\pi)$ where γ is the gyromagnetic ratio (42.6 MHz/T), h is the Planck's constant given by 6.626×10^{-34} and B is the magnetic field, and m is the spin number that takes the values of either $+\frac{1}{2}$ or $-\frac{1}{2}$. Calculate the probability of spins with $m = \frac{1}{2}$ relative to that with $m = -\frac{1}{2}$ at magnetic field B = 1 T and temperature of 300° K. Assume a unity density of states factor.

Solution: substitute in Boltzmann factor = (density factor=1) x exp(-(U1-U2)/ k_BT) where U= (γ m B h/2 π) and m=+1/2 or -1/2

50. [10 points] Consider two systems A, and A' that are in thermal contact with each other but are isolated from the rest of the universe. Let system A have 1 particle while system A' has three particles. The energy levels each particle may discrete values of integer multiples of u (that is, may take u, 2u, 3u, etc.). Let the total energy be U*= 5u. Compute the number of microstates for the whole system A*.

Solution:

System A		System A`		System A ²
U	Ω	U'	Ω `	Ω^*
1	1	4	3	3
2	1	3	1	1
				Ω^*_{tot} = 4

Best of Luck!