Medical Equipment I Term Exam

January 1, 2008

<u>Solve as Much as You Can – Maximum Grade: 75 Points</u> Q1. Answer the following questions by marking the best answer among the choices given (1.5 points each):

- 1. A solute that can pass through a semipermeable membrane is called ...
 - a. Permeant (*)
 - b. Semipermeant
 - c. Impermeant
- 2. Osmotic pressure occurs when ...
 - a. There is a slow approach to steady state across a membrane
 - b. A species on one side of a membrane cannot cross to the other side (*)
 - c. There are membrane pores that follow a tortuous path
- 3. Headaches in renal dialysis occur due to ...
 - a. Low urea permeability of capillary-brain membrane (*)
 - b. High water permeability of capillary-brain membranes
 - c. Slow removal of urea from blood by hemodialysis equipment
- 4. Increasing urine volume by injecting a medium-weight molecule is called ...
 - a. Edema
 - b. Osmotic fragility
 - c. Osmotic diuresis (*)
- 5. Countercurrent transport is preferred in hemodialysis because ...
 - a. It maintains a concentration difference along the whole path (*)
 - b. It maintains a very high concentration difference that decays along the path
 - c. It generates an additional diffusion energy
- 6. The kinetic energy of heavy particles in Brownian motion is ... that of light particles at very low temperatures.
 - a. Higher than
 - b. Lower than
 - c. Same as (*)
- 7. Artificial kidney filter membrane is ... to urea.
 - a. Permeable (*)
 - b. Semipermeable
 - c. Impermeable
- 8. Cellular membrane of nerve cells is a ... membrane.
 - a. Permeable
 - b. Semipermeable (*)
 - c. Impermeable

- 9. The voltage across the cell membrane depends on ...
 - a. Concentration of all solutes on both sides of the membrane
 - b. Concentration of any of the solutes on both sides of the membrane
 - c. Concentration of only permeant solutes on both sides of the membrane (*)
- 10. Electrotonus spread means ...
 - a. Voltage dependent conductivity of membrane
 - b. Current flux density dependent conductivity of membrane
 - c. Membrane model that obeys Ohm's law (*)
- 11. Passive spread is a valid model for ...
 - a. Action potential
 - b. Small membrane voltage changes (*)
 - c. Large but slow membrane voltage changes
- 12. Conduction speed in myelinated nerve fibers is ... that of unmyelinated.
 - a. Slower than
 - b. Faster than (*)
 - c. Same as
- 13. The conduction speed in myelinated fibers depends on ...
 - a. Square root of fiber radius
 - b. Fiber radius (*)
 - c. Square of fiber radius
- 14. The normal vector to a plane defined by two vectors can be calculated using ...
 - a. Dot product of the two vectors
 - b. Vector product of the two vectors (*)
 - c. Direct product of the two vectors
- 15. In heat flow type of system energy change, ...
 - a. Work is done on the system to hold the conservation of energy
 - b. Energy levels shift to higher energy with same population
 - c. Average population in energy levels changes (*)
- 16. Kirchhoff's first law is derived from ...
 - a. Conservation of energy
 - b. Conservation of mass
 - c. Conservation of charge (*)
- 17. If the half life of ^{99m}Tc is 6 hours, then the length of time required for it to reach 1/8 is ... hours.
 - a. 18 (*)
 - b. $6\sqrt{3}$
 - c. $6 \log_{e}(3)$

- 18. In artificial kidney, if the time constant of the solute exchange is 1 hour for a fluid volume of 36 liters assuming a typical cellophane membrane of ωRT of 5×10^{-6} m/s then the membrane surface area is ...
 - a. 1.5 m²
 - b. $2 m^2 (*)$ c. $2.5 m^2$

19. A biological system y(x) represented by the differential equation $\frac{dy}{dx} = 0.543y$ has a ... form.

- a. Exponential decay
- b. Exponential growth (*)
- c. Linear
- 20. Fick's second law of diffusion combines Fick's first law and ...
 - a. Solvent drag
 - b. Continuity equation (*)
 - c. Viscosity
- 21. The buoyant force on aquatic animals in water is ...
 - a. Very small
 - b. Approximately the same as their weight (*)
 - c. Much larger than their weight
- 22. Macrostates of a biological system with many particles include
 - a. Temperature (*)
 - b. Particle velocity
 - c. Particle energy
- 23. A particular disease in rabbits is linked to a defective X chromosome and appears only when all X and Y chromosomes present are defective. If the probability of a single X chromosome to be defective is 0.01 and that for Y chromosome is 0.001. The percentage of population carrying this disease if each rabbit has 2 X and 1 Y chromosomes is ...
 - a. 0.00001
 - b. 0.0000001 (*)
 - c. 0.000000001
- 24. After 4 times the diffusion time, the diffusion distance will be ...
 - a. half
 - b. Double (*)
 - c. Four times
- 25. Isolation of an infectious compartment can be practically done using ...
 - a. Semipermeable membrane
 - b. Adiabatic walls
 - c. Laminar flow (*)

26. At equilibrium, probability of all microstates is ...

- a. Equal (*)
- b. Zero
- c. 1
- 27. Changes in electric field within a dielectric material due to polarization electric field are accounted for by replacing ε_0 by ... in electric field equations.
 - a. $\kappa \epsilon_{o}(*)$
 - b. χε_o
 - c. εο /(1+χ)
- 28. Consider a charged hollow spherical shell of radius r with a charge of +q, then the electric field inside the shell is ...
 - a. $+q/2\pi\varepsilon_o r^2$
 - b. Zero (*)
 - c. $-q/2\pi\varepsilon_o r^2$
- 29. Action potential reaches a depolarized voltage of +50 mV due to ...
 - a. Opening sodium channels in the membrane (*)
 - b. Opening chlorine channels in the membrane
 - c. Closing potassium channels in the membrane
- 30. For a permeable membrane with initial concentration difference between its sides, the steady state will involve ...
 - a. Zero solute concentration on the two sides
 - b. Nernst potential difference corresponding to the concentration difference
 - c. Zero net solute transfer between the two sides (*)
- 31. Boltzmann factor determines the relative probability of two states having different ...
 - a. Kinetic energy
 - b. Potential energy (*)
 - c. Total energy = kinetic energy + potential energy (*) (*) (Both are correct same K.E.)
- 32. The electrostatic field inside a human's body standing 100 m from a high voltage power line carrying 100 kV at 50 Hz is ...
 - a. Zero (*)
 - b. 1 kV/m
 - c. 0.01 kV/m
- 33. The Nernst potential for nerve cell membrane is calculated based on ... on both its sides.
 - a. Sodium and potassium concentrations
 - b. Chlorine concentration
 - c. All of the above (*) (*)
- 34. Pressure variation in the atmosphere can be explained by ...
 - a. Boltzmann's constant
 - b. Boltmann's factor (*)
 - c. Density of states factor

35. Edema can generally be explained by the presence of

- a. abnormal osmotic pressure (*) (*)
- b. abnormal hydrostatic pressure (*) (Both are correct)
- c. higher particle kinetic energy due to fever

Q2. Mark the following statement as either True (T) or False (F) (1 point each):

- 1. Nerve cell membrane changes its membrane potential by adjusting its permeability to different ions (T)
- 2. Kinetic energy of particles in Brownian motion is lower at higher temperatures. (F)
- 3. Conduction speed of nerve fibers is proportional to the characteristic length divided by the characteristic time (T)
- 4. In Brownian motion, particle velocity is constant and given by $\sqrt{3k_BT/m}$. (F)
- 5. Mean free path is much larger than particle size in liquids. (F)
- 6. In diffusion across a permeable membrane, net flux of solues stops at equilibrium. (T)
- 7. Drag forces are determined by the bulk flow in liquids. (T)
- 8. The entropy of a system is equal to the root mean square of entropies of its subsystems. (F)
- 9. Systems that are not at equilibrium tend to change until it reaches one of its steady state microstates. (F)
- 10. In Nernst equation, the voltage across the membrane is the result of the different concentrations of solutes across the membrane. (T)
- 11. Nernst potential depends on temperature (T).
- 12. If there is translational force equilibrium on an object, then the object must be at rest. (F)
- 13. Conservation of energy leads to Kirchhoff's second law. (T)
- 14. Variation of concentration with time is taken into account in Fick's first law of diffusion. (F)
- 15. Patients may suffer burns near the edges of electrosurgery electrodes due to high current density. (T)
- 16. Brownian motion involves collision of particles moving in random directions. (T)
- 17. The macrostate of a system is determined by specifying all external parameters. (F) (F)
- 18. First law of thermodynamics is based on conservation of mass. (F)
- 19. The derivative of entropy with respect to energy is equal to the inverse of temperature. (T)
- 20. Mean free path is in the order of particle size in gases. (F) (F)

Q3. [5 points] The potential energy of hydrogen nuclei in a magnetic field is equal to (γ m B h/2 π) where γ is the gyromagnetic ratio (42.6 MHz/T), h is the Planck's constant given by 6.626×10^{-34} and B is the magnetic field, and m is the spin number that takes the values of either + $\frac{1}{2}$ or $-\frac{1}{2}$. Calculate the probability of spins with m= $\frac{1}{2}$ relative to that with m= $-\frac{1}{2}$ at magnetic field B= 1.5 T and temperature of 300 °K. Assume a unity density of states factor.

Solution: substitute in Boltzmann factor = (density factor=1) x exp(-(U1-U2)/k_BT) where U= (γ m B h/2 π) and m=+1/2 or -1/2

Q4. [5 points] Consider the problem of gas exchange between blood and air in alveoli. If the average radius for alveoli is 100 μ m and that for capillaries is 4 μ m and given that the diffusion constant in air is 2.1×10⁻⁵ and in water is 2.4×10⁻⁹, calculate time required for oxygen to diffuse from the center of an

alveolus to the center of a blood capillary in contact with it in case of a normal subject. Compare it to that of a patient of lung edema where the alveoli are lined with an additional small layer of fluid of thickness $4\mu m$.

Solution: Same steps as problem 4.18 with only an added layer of the extra fluid **inside** the alveoli

Q5. [5 points] In the solution to the Cable equation assuming electrotonus spread, use a different form for the membrane current per unit area j_m as $j_m = g_m (v - v_r) + j_{leakage}$ where $j_{leakage}$ is assumed constant. Derive the solution for the membrane voltage as a function of space assuming $c_m = 0$. [Hint: derive a modified solution to the one given in textbook equation (6.58) under the new assumption]. Solution: Since $j_{leakage}$ is assumed constant, let $j_m = g_m (v - v_r) + j_{leakage} = g_m (v - v_r')$ where $v_r'^2 + j_{leakage}/g_m$

Solution: Since $J_{leakage}$ is assumed constant, let $J_m = g_m (v - v_r) + J_{leakage} = g_m (v - v_r')$ where $v_r' = + J_{leakage}/g_m$ and you can obtain the solution as the one in the textbook for the required case by substituting v_r by v_r' .

<u>O6.</u> [5 points] Estimate the functional relationship between x and y for the 5 curves represented in the following plots:

