
Ultrasound Imaging System Practical Components

General Block Diagram

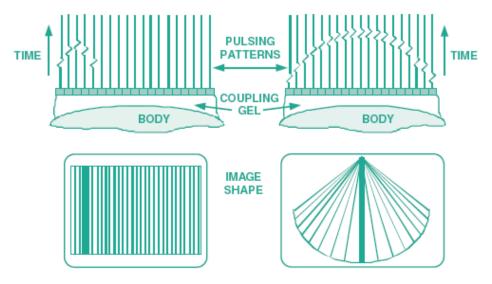


Figure 3. Linear vs. phased-array imaging.

Beamformer Design Approaches

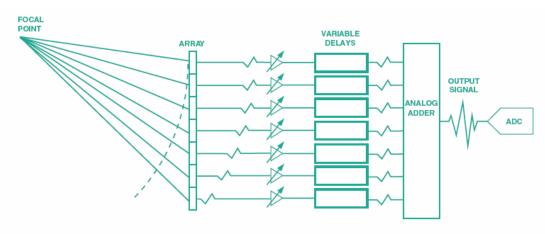


Figure 4. Simplified block diagram of ABF system.

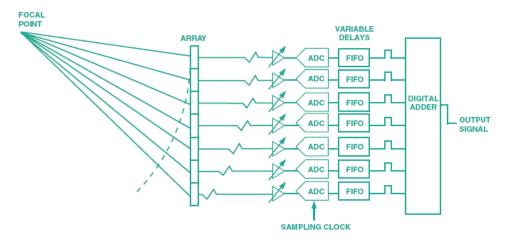


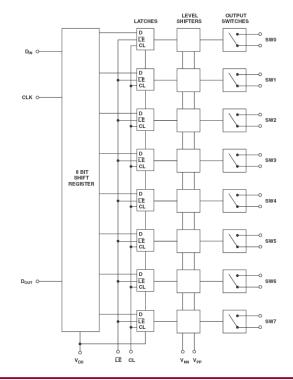
Figure 5. Simplified block diagram of DBF system.

Low Charge Injection 8-Channel High Voltage Analog Switches

Features

- HVCMOS® technology for high performance
- □ Very low quiescent power dissipation 10µA
- ☐ Output on-resistance typically 22 ohms
- Low parasitic capacitances
- ☐ DC to 10MHz analog signal frequency
- -60dB typical output off isolation at 5MHz
- ☐ CMOS logic circuitry for low power
- Excellent noise immunity
- On-chip shift register, latch and clear logic circuitry
- ☐ Flexible high voltage supplies

Applications


- Medical ultrasound imaging
- ☐ Piezoelectrictransducer drivers

General Description

These devices are low charge injection 8-channel high-voltage analog switch integrated circuits (ICs) intended for use in applications requiring high voltage switching controlled by low voltage control signals, such as ultrasound imaging and printers. Input data is shifted into an 8-bit shift register which can then be retained in an 8-bit latch. To reduce any possible clock feed-through noise, Latch Enable Bar (LE) should be left high until all bits are clocked in. Using HVCMOS technology, these switches combine high voltage bilateral DMOS switches and low power CMOS logic to provide efficient control of high voltage analog signals.

These ICs are suitable for various combinations of high voltage supplies, e.g., $V_{\rm pp}/V_{\rm NN}$: +50V/–150V, or +100V/–100V.B

Block Diagram

Logarithmic Amplifier

INPUT LEVEL (dBm) Figure 9. Vout vs. Input Level at 5 V Supply; Showing Intercept Adjustment

Low Cost DC-500 MHz, 92 dB **Logarithmic Amplifier**

AD8307

FEATURES

Complete multistage logarithmic amplifier 92 dB dynamic range: -75 dBm to +17 dBm to –90 dBm using matching network Single supply of 2.7 V minimum at 7.5 mA typ DC to 500 MHz operation, ±1 dB linearity Slope of 25 mV/dB, intercept of -84 dBm Highly stable scaling over temperature Fully differential dc-coupled signal path 100 ns power-up time, 150 µA sleep current

APPLICATIONS

Conversion of signal level to decibel form Transmitter antenna power measurement Receiver signal strength indication (RSSI) Low cost radar and sonar signal processing Network and spectrum analyzers (to 120 dB) Signal level determination down to 20 Hz True decibel ac mode for multimeters

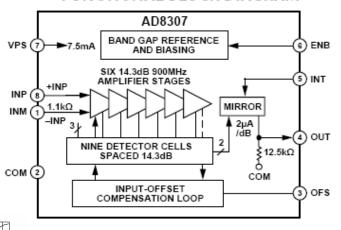


Figure 1.

TGC

Ultralow Noise VGAs with Preamplifier and Programmable R_{IN}

AD8331/AD8332/AD8334

FEATURES

Ultralow noise preamplifier

Voltage noise = 0.74 nV/√Hz

Current noise = 2.5 pA/√Hz

3 dB bandwidth

AD8331: 120 MHz

AD8332, AD8334: 100 MHz

Low power

AD8331: 125 mW/channel

AD8332, AD8334: 145 mW/channel

Wide gain range with programmable postamp

-4.5 dB to +43.5 dB

+7.5 dB to +55.5 dB

Low output-referred noise: 48 nV/√Hz typical

Active input impedance matching

Optimized for 10-bit/12-bit ADCs

Selectable output clamping level

Single 5 V supply operation

AD8332 and AD8334 available in lead frame chip scale package

APPLICATIONS

Ultrasound and sonar time-gain controls High performance AGC systems I/Q signal processing High speed, dual ADC drivers

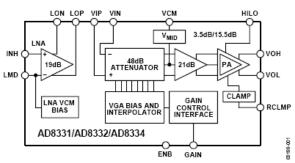
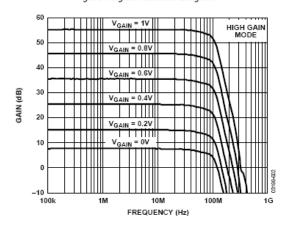



Figure 1. Signal Path Block Diagram

ADC - ABF

8-Bit 20 MSPS, 60 mW Sampling A/D Converter

AD775

FEATURES

CMOS 8-Bit 20 MSPS Sampling A/D Converter

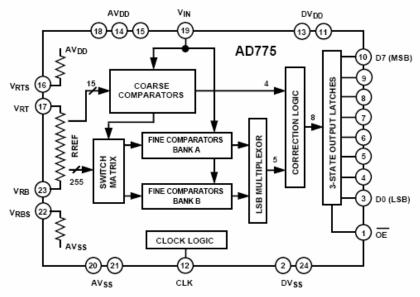
Low Power Dissipation: 60 mW +5 V Single Supply Operation Differential Nonlinearity: 0.3 LSB

Differential Gain: 1%

Differential Phase: 0.5 Degrees

Three-State Outputs

On-Chip Reference Bias Resistors


Adjustable Reference Input

Video Industry Standard Pinout

Small Packages:

24-Pin 300 Mil SOIC Surface Mount

24-Pin 400 Mil Plastic DIP

ADC - DBF

Quad, 12-bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter

AD9228

FEATURES

Four ADCs integrated into 1 package

119 mW ADC power per channel at 65 MSPS

SNR = 70 dB (to Nyquist)

Excellent linearity

 $DNL = \pm 0.3 LSB (typical)$

 $INL = \pm 0.4 LSB (typical)$

Serial LVDS (ANSI-644, default)

Low power reduced signal option, IEEE 1596.3 similar

Data and frame clock outputs

315 MHz full power analog bandwidth

2 V p-p input voltage range

1.8 V supply operation

Serial port control

Full-chip and individual-channel power-down modes

Flexible bit orientation

Built-in and custom digital test pattern generation

Programmable clock and data alignment

Programmable output resolution

Standby mode

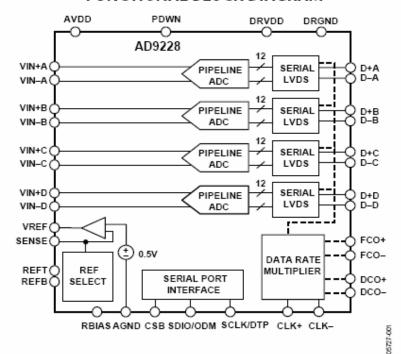
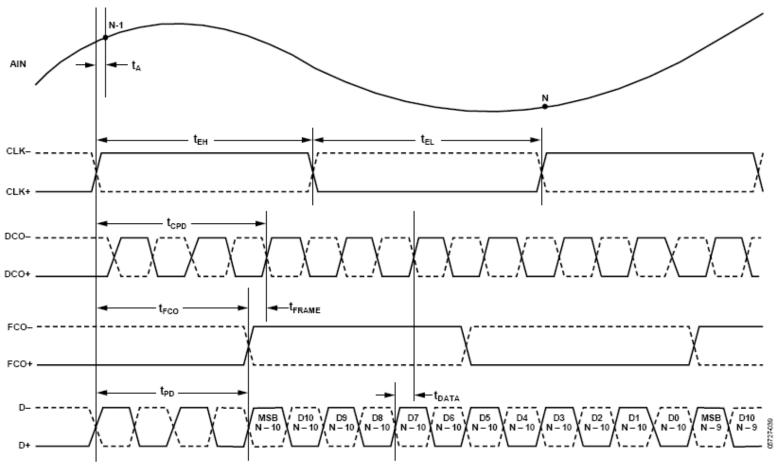
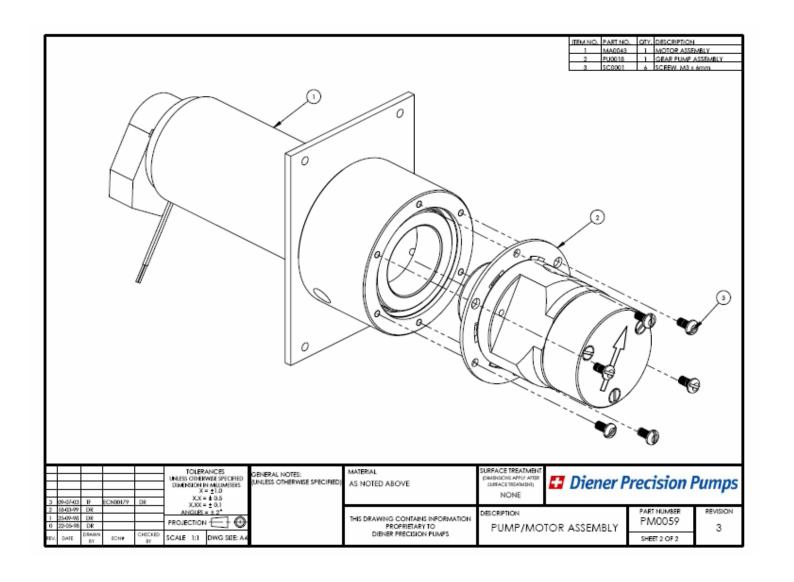
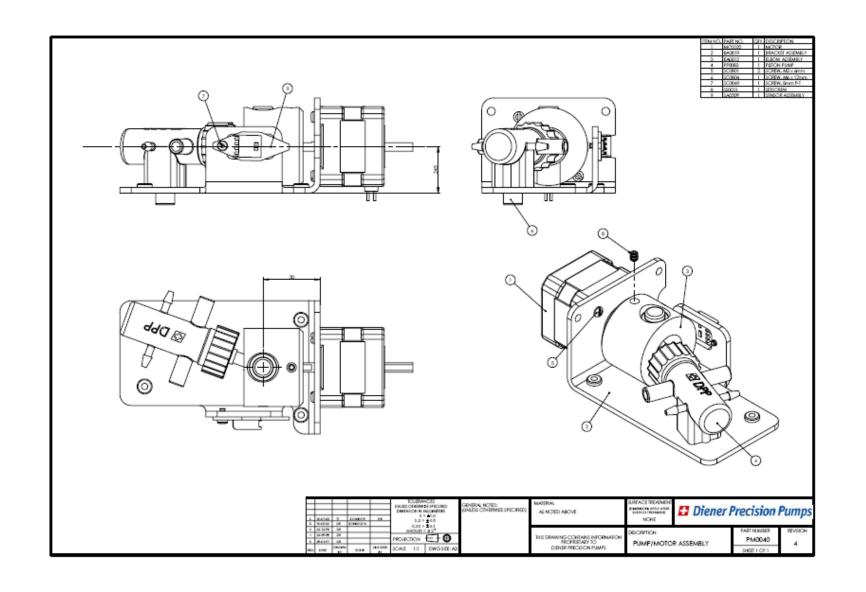


Figure 1.

TIMING DIAGRAMS


Figure 2. 12-Bit Data Serial Stream (Default)

Hemodialysis System Practical Components

Components

- Heater control
- Proportioning pump
- Flow pumps
- Temperature measurement
- Conductivity measurement
- Ultrafiltration measurement
- Blood pump
- Safety sensors (AB, BL)
- Venous Clamp

Performance

Nominal Gear Width Repeatability (at fixed inlet/outlet pressure)

Minimum Inlet Pressure Maximum Oulet Pressure Maximum Differential Pressure

Speed Range

Internal relief valve (bypass)

Relative Humidity Range (operating)

Fluid Temperature Range*

Ambient Operating Temperature Range

Maximum "dry running" time**

Noise specification

Electrical

Motor Type

Nominal Power Input Power

Speed Control

Tachometer

Maximum current input Electrical Connector

Cable

Physical

Inlet/Outlet port size

Power Transmission

Dimensions

Storage Temperature Range

Relative Humidity Range

Weight (dry)

Wetted Materials of Contstruction

Stainless Steel Static O-rings

Gears/Bearings

9mm

±3% above 1000 rpm

-670mmHG

5 bar

5.8 bar

300 to 3000 rpm

Yes (adjustable by customer)

10 - 80%

+5°C to +100°C

+5°C to +50°C

2 minutes

None

24 volt brushless-dc

35 watts

24VDC+/- 0.5 VDC

0 to 5 vdc input

2 pulses/revolution

2 amps

none

4 X #22AWG, sheilded & grounded internally

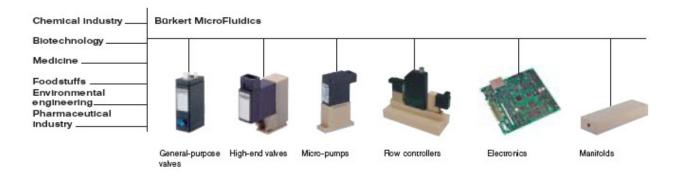
1/8"-27 N.P.T.

Magnetically coupled

See dimensional layout drawing

5°C to +120°C

5-100%


1.5 kg

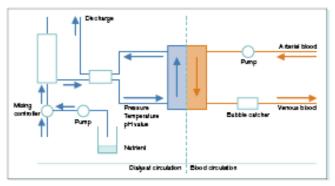
DIN 1.4436 (AISI 316L)

Silicone

PEEK1

Valves

	Connectors						Body material									Sealing material								
	Flange	G thread	NPT fread	UNF 1/4-28 thread	M5 thread	Tubespigot	Cable plug	Rectangular plug	Leads	SS	Brans	PPS	Œ	PVC	8:	PTFE	ETFE	PEBK	PCTFE	PVDF	FFKM	FPM	EPDM	PFTE
Type 0124																								
Type 0127									•									•				٠		
Туре 6604																								
Туре 6606																								
Type 6608																								
Туре 0330			•				٠																•	
Type 0331																						•	•	
Type 6124	•								•														•	
Type 6126	•				•				•													•	•	
Type 6128	•		•																					
Type 6104	-								٠													•		
Type 6106	•						•	•	•				•									•		
Type 0121			•				•		•						•						•		•	
Туре 0330 А		•	•				•															•		
Type 6011 A																								
Type 6013 A	•	•					٠				•											•		
Type 2822	•	٠	•				•		٠	•	•											٠	•	
Type 6021		٠	•							•	•											٠	٠	
Type 6022		•	•				•			•	•											٠	•	
Туре 6023			•																			•		


Technology for infusion, hemodialysis and anesthesia

MicroFluidics in medicine

4.1. Kidney dialysis machines

In the generic sense, dialysis is a process for separating low-molecularweight substances from a fluid by diffusion of these substances through a semipermeable membrane. Use of dialysis in medicine is more than familiar as the principle of the "artificial kidney" for hemodialysis. Similarly, however, dialysis is also used in biotechnology as a "membrane bioreactor" for conducting fermentation processes under specific boundary conditions.

Dialysis in medicine largely replaces the function of the kidney by filtering out water, metabolic end products (e.g. urea) and other toxins from the blood. Blood purification is performed in the dialyser by means of a semipermeable membrane which separates the circuit of the blood to be purified from that of the purification fluid (dialysate). The toxic substances and water from the blood pass through the membrane into the dialysate and are thus removed. The disty sate (deionised water) is enriched with nutrients and its nutrient content, temperature and other parameters are constantly monitored.

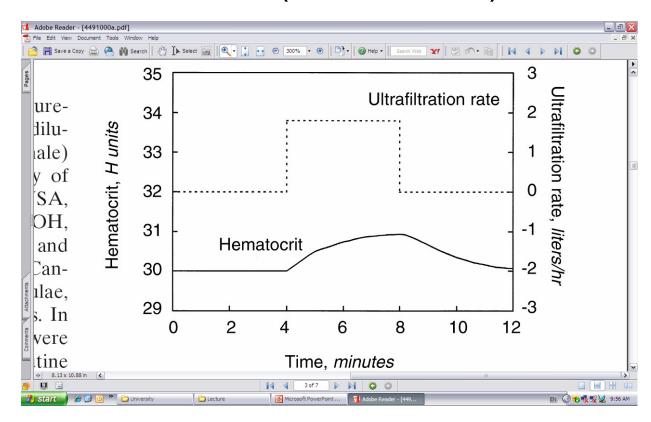
Distyele process

MicroFluidies, including an automatic control and monitoring system, forms the technical basis of a kidney dialysis machine, whose functions are transport, dosing, mixing, distribution and measurement.

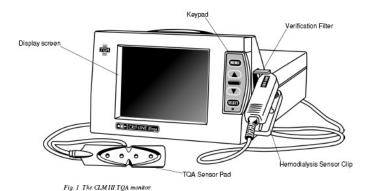
Specific MicroFluidic tasks and requirements Circulating the blood Transporting the purification fluid Dosing the nutrient solution

4.2.

Adsorbers


In the case of the adsorber process, pathogenic substances, e.g. cholesterol, are removed from the blood outside of the body. The bbod flows out of the patient's vein into the adsorber in which suitable materials selectively remove the substances from the blood. A special machine ensures that the blood circulates through the adsorber.

4.3. Cell separators


The cell separator is a device for obtaining blood components. Fields of application include removal of diseased cells or blood plasma from a patient's blood or collecting cells from a patient's own blood for subsequent back-transfusion.

Ultrafiltration Measurement

- Flowmeter-Based (Dialysate side)
- Hematocrit-Based (Blood side)

Crit-Line TQAIII

7.2 Standard Specifications

Instrument Range

Hematocrit (Hct): 5 Hct - 60 Hct Oxygen Saturation: 55% - 100%

Operating and Storage Temperature

50 F° to 104 F° (10 C° to 40 C°) Avoid extreme temperatures during transportation (<32 F°, >110 F°)

Hematocrit Accuracy (±1 SD)

10 Hct - 60 Hct: ± 1 Hct

Oxygen Saturation Accuracy

55% - 100%: ±2 Sat % (Hct ≥ 18) 10% - 45%: Unspecified

Access Blood Flow

Estimates flow rates 50 ml/min – 2500 ml/min ±15%

Recirculation Capability

Estimates recirculation values >4%

Percent Blood Volume Change Accuracy

Approximately ±3BV% (based on Hct)

Battery Capacity

2 Hours continuous on full charge

Full Charge Time

36 Hours

Physical Dimensions

5.25" H, 8.25" W, 11.63" L 5 lbs.

HD Blood Flow Rate Capability

50 ml/min - 1300 ml/min

Internal Data Storage

Sufficient to store 26 hours of data

Input

12VDC/1 Ampere/12W 1.2A max

Power Supply Unit

Universal regulated supply 100 VAC - 240 VAC 12 VDC/1.25 Ampere output

Communications Ports

8 Position Keyed Modular Jack (RJ-45) Serial Port

DB-25 female Parallel Port

NOTE: Equipment connected to this monitor should comply with IEC 950 and be kept out of patient reach.

Electrical Shock Protection

Class II Internally Powered Type BF

Water Protection

Splashproof

Anesthetic Suitability

Not Suitable

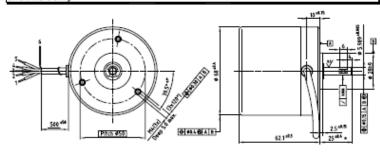

Mode of Operation

Continuous

Battery

Type: Rechargeable Sealed Lead Battery (12V, 2A-h) Battery is replaceable Polarity: +/- (labeled on battery) Mode of Insertion: Via 2 pin molex connector (replaceable)

Venous Clamp


Motors

BL58 EB

Brushless DC motor

35 Watt

Dimensional drawing

Motor data

Motor order number	Shaff length 25 mm	4322 016	58001		
Mater order number	Shaff length 20 mm	4322 016	58002 *		
Nominal Voltage	[V]	24			
No load Speed (V in a	- 4V)	[rom]	3650		
No load Current (V in	[mA]	280			
Noninal Current limits	[A]	2.0			
Maximum forque	n/An	110			
Maximum output powe	[M]	35			
Operating temperatur	[*0]	0 to 90			
Thermal resistance for to ambient	[K/W]	3.7			
Rotor inertia	[kgm 2]	120×10 ⁻⁴			
Mass of motor	[a]	550			

Maximum radial lead 20 mm from mounting front ino axial lead towards flangel	N	40
Maximum axial load - fowards flange (no radio) load) - from flange	INI INI	18 10

Thermal motor protection :

Motor shuts down if the motor flange temperature reaches approx. 93°C Motor restarts if the flange temperature is cooled down to approx. 80°C

For thermal reasons it is advised to mount the motor on a heat conducting frame if high output power is desired.

Shaft 20 mm for combination with gearboxes.

Electrical Connection

Lead no.	Lead	Function	Description
1	brown	PW/RV	Direction control input - 'High' CW, 'Low' CCW (shaftside) ide not leave this lead floating)
2	white	V in	Input voltage (setpoint) for speed loop Resulting speed approx, 1900 rps/V V in > 6 V : neiter at full speed, speedloop off (spen Loop)
3	green	FG	Frequency generator output, 35 ppr ; R out = 4k Ohm (approx)
4	black	GND	Hoter return, ground (0 V)
5	red	Vp	Hotor supply voltage +24 V (min. 14 V - max 30 V)
6	bare	shield	Shield for cable and connected to motor housing

		nin.	typ.	max
Lead 1	$\overline{}$	_	_	_
input 'Nigh'	[V]	4.1	5	
input 'low'	[V]		0	1.9
abs, nax/nin, irput	[V]			:30
Lead 2				
abs. max./min. inpul-	IVI			130
Lead 3				
output 'high', not loaded	[V]	4.0	4.5	5.0
output 'low', not loaded	IVI	0	0.1	0.2

Performance curve 5860

Product combinations

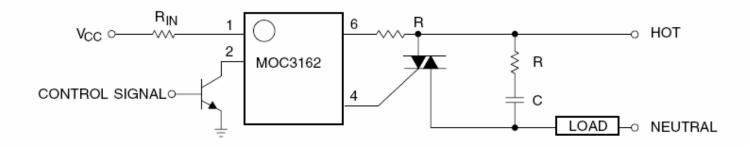
- Gearbox S64A
 Gearbox S69A Gearbox P58A
 Gearbox P58A

Options

- Square mounting flange
 Sheft diameter, 7 or 8 mm Speed loop with frequency input
 Protection class upto P67DS

Features

- Adjustable speed loop
- Direction control input (forward / reverse)
 Frequency Generator output (speed sensing)
- Thermal motor protection Long life (20,000 hours)
 Low EMI
- Protection class IP54


1999-10-66 / subject to change

PREMOTEC Internet : www.premotec.com - E-mail : sales@premotec.com

PRECISION MOTOR TECHNOLOGY BV

Precision Motor Technology b.v. - Kerkeplast 16 - 33/3 LC - Dordrecht - The Netherlands - Tel. +31 78 621 99 40 - Fax. +31 78 621 48 28

Line Voltage Control

DESIGN RULE: V_{peak}/I_{peak} = 180 /1 amp = 180 ohms (Assume the line voltage is 115 volts RMS)

Ultrasound Assignment

- Design an 8-channel ultrasound system based on analog beamforming technology. Estimate the cost of such system and the advantages/disadvantages of this design.
- Design an 8-channel ultrasound system based on digital beamforming technology. Estimate the cost of such system and the advantages/disadvantages of this design.
- 3. Provide a survey of the product lines of 5 commercial ultrasound imaging system manufacturers. Sort their products into categories (low-end, mid-range and highend systems).

Hemodialysis Assignment

- Design a basic hemodialysis system that utilizes an ultrafiltration estimation method based on hematocrit value measurement.
- Provide a short survey of practical ultrafiltration rate estimation methods currently in use by hemodialysis companies.
- Provide a survey of the product lines of 5 commercial hemodialysis system manufacturers. Sort their products into categories (low-end, mid-range and high-end systems).