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; LINEAR PREDICTION
OVERVIEW

; The idea of linear prediction is a powerful one in signal modeling, It is also directly
connected to the use of all-pole models in spectrum estimation. The tutorial paper by
Makhoul [7] provides an excellent overview of the subject. Many textbooks also treat the
topic (e.g., Rabiner and Schafer [4] for speech processing). The next section deals with this
important application.

In the prediction problem, we are given a signal x[#] and we want to build a system
that will predict future values. A linear predictor (Fig. 11.1} does this with an FIR filter.!

£
2[n] =) (—ao)xln — k] (0-1)
k=1

The best linear predictor will be one that minimizes an error such as least squares. If we
| want x[#] to be a “prediction” of the future value, x[# + ], we minimize

E=Y|xln+r]— k][ (©-2)

by choosing the predictor coefficients {axz}. The range of the sum, to be specified later, leads
to two different methods.

I'The minus sign with the predictor ceefficients {a¢} is awkward but necessary 1o match the sign convention in
MaTLAR'S £11ter function, and at the same time, express the prediction erter e[n] as a difference.
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After taking partials (or applying the orthogonality principle of least squares), the
problem of minimizing £ in (0-2) can be reduced to solving normal equations |8]. However,
in MATLAR there is an easier way because the backslash operator (1} will solve a sct of
overdetermined linear equations in the least-squares sense. The predictor in (0-1) can be
written out as a set of linear equations, with the minus sign moved to the left-hand side.

—x[1+7] & ax[0]+ ax[=1+ -+ epx[I=P] (=1

w-x[}-’+r] % alx{P—I]+a1x[P:—2]+---+apx[O] n=7"r)

—x[l:,—ll % alx[L~2—r]+---:-I—a,nx[L—l—r—P] n=L—1-r)
—x[L—1:+P+r'] :u 04 -vn +(;+GPX[L—I] (n=_L~—1+P)

{0-3)
This set of equations can be represented in matrix form as

—X %= Xa

where the vector x and the matrix X contain known signal values. The squared error between
the left- and right-hand sides will be minimized if the problem is solved in MATLAB via
a = -¥X \ x. The resulting values for {a;} define the FIR linear predictor.

When » = O there are two methods of linear prediction, which are distinguished
solely by which equations are included in the error sum (0-2).

L. Autocorrelation method: All possible equations fromas = 1 tor = L—1+ P
are included. Thus if the extent of the input data x[n] is finite 0 = n < L,
the prediction distance is », and the length of the predictor is P, there will be
L—1+ P equations. Tn some cases the predictor will be trying to match 0, because
x[E1=0, x[L+1]=0, ..., x[L—-1+P+r]=0.

2. Cevariance method: Only those equations for which all values of x|z| needed
on both sides are present in the data [i.e., equations (# = Plto(n = L—1—r)
in (0-3)]. This method uses fewer equations, only L — P—r, but does not predict
past the end of the data,

For long input sequences, however, there should be essentially no difference in the solution,
which can be obtained with the backslash operator in either case.

There is often confusion over the notation used for the predictor coetficients {a;},
because there is no standard convention used in textbooks and papers. In this section the
sign of the predictor coefficients {a;} will be taken consistent with MATLAB, so that the
“prediction error filter” A4(z) will have plus signs for the a;’s.

F
ARy =2+ Zakz_k (0-4)
k=1
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This is opposite from the convention found in |7]. The notable difference is that the errer
signal e[n] must now be written with a plus sign:

e[n] = x|n +r|— £|nl
P
= xln+rl+ Y axln -kl
k=

Thus the error signal e[n | can be interpreied as the output of an LTI system with transfer
function A(z) and input x[xz].

[ | [ | PROJECT 1: LINEAR PREDICTION OF DATA

In this project, linear prediction is applied to synthetic signals and to real data. The real data
are from the Dow-Jones Industrial Average sampled weekly for about 94 years. With such
a long sequence, the linear prediction method can be designed over one section of the data
and then tested over other sections to evaluate its effectiveness as a predictor. Performance
of the method on real data should illustrate some of the limits of the method imposed by
the inherent assumption that the data fit an all-pole model. The book by Marple [3] also
contains an interesting data set—sunspot numbers for the years 1845-1978.

Hints
You may find the MATLAB function convmtx useful, atong with the backslash {\)

operator, which can solve simultaneous linear equations in the least-squares sense. For
plotting poles and zeros, use the M-file zplane from Appendix A.

Function for Linear Prediction

Write two MA1LAB functions 1o compute the prediction error filter coefficients {4, : k =
1.2..... P}, one for the “autocorrelation” method and the other for the “covariance™ method.
Each function should accept three inpul arguments: a vector of data (%), the order of the
predictor (£}, and the prediction distance (r). The cutput arguments should include the filter
cocfiicients (a), the error sequence (=), and an index variable containing the sumple numbers
at which the error signal was computed (I). An example function shell is as follows:

function [a,o,1] = covpred(x, p, )

% COVERLED Covarizmnce Method Lo predict x[n+r]

% Usago: la, o' — covprodi{x, p, r)

)

3 X input signal

% g : order of predictor (= number of poles)

% r o+ (OPTIONAL) prediction distance, i.e., predict xin+r]
% & 1 prediction errovy filter coefficients

% ¢ @ prediction error signal over I

5 Lotal error ia E + sumiabs (=) ."2)

% I : range of ercor signal

% (e.g., for covariance method e e R S et
% Examplo: x — Filter(l, [1 0.2 0.3], |1 zeroafl,100) ]
& [a,a] - covpreacl(=z, 2, 0}

% The re.urned veclor a should be |1 0.2 0.3]




