Medical Equipment II Info

- Meetings: Lecture + Sections (2+1)
- Total Grade: 75 points
 - Midterm and activity: 25 points
 - Term Exam: 50 points (2 hour exam)
- Textbook: Hobbie and Roth
- Contents: basics of ultrasound, x-rays and magnetic resonance imaging

OVERVIEW OF MEDICAL IMAGING

Yasser M. Kadah, Ph.D.

Associate Professor, Cairo University

Objective

Provide an overview of medical imaging to promote student interest and knowledge of its basic ideas and clinical applications

Contents

- Basic Ideas of Medical Imaging
- Brief history
- How it works: Examples for ultrasound, x-ray and MRI
- Applications
 - Imaging of anatomy
 - Imaging of flow
 - Imaging of function
 - Imaging of chemical composition
 - Image-guided interventions
 - Image of connectivity
- Safety of Medical Imaging
- Challenges for biomedical imaging

Mathematical Problem

- For an $N \times N$ image, we have N^2 unknowns to estimate
 - Sufficient equations must be available
 - In most cases the problem can be formulated as a linear system
 - Simplest case when the acquired data correspond directly to the image points (i.e., diagonal linear system matrix), e.g., ultrasound imaging.

Basic Ideas of Imaging

To use a means to measure and map a useful property of the human tissues

- Examples:
 - Reflection photography, ultrasound
 - Transmission x-rays
 - Radiation MRI, PET/SPECT

Imaging Methods

 A variety of energy sources can be used to measure one or many tissue properties

Energy Sources	Tissue Properties	Image Properties
X rays	Mass density	Transmissivity
γ rays	Electron density	Opacity
Visible light	Proton density	Emissivity
Ultraviolet light	Atomic number	Reflectivity
Annihilation	Velocity	Conductivity
Radiation	Pharmaceutical	Magnetizability
Electric fields	Location	Resonance
Magnetic fields	Current flow	Absorption
Infrared	Relaxation	
Ultrasound	Blood volume/flow	
Applied voltage	Oxygenation level of blood	
	Temperature	
	Chemical state	

- In the 1800s and before, physicians were extremely limited in their ability to obtain information about the illnesses and injuries of patients.
 - They relied essentially on the five human senses

8

- 1895: physicist Wilhelm Röntgen, discovered x-rays
- A few months later, the use of x-rays in medical application started in several places

Poster for a public demonstration of x rays, 1896, Crystal Place Exhibition, London and an advertisement for x-ray studio

Creat Reduction IN PRICE OF HICH CRADE X SAATIG MACHINES, CALVANIC, PORTADIE, DY CEIL CAMBINATION Batteries, CADINES, Wall and Table Printes, Stoches, Wall and Table Printes, Stoches, Relocatist, Metters and Electrodes. Our en Catalogue Xo. Styll be sent rate on application. Electro-Medical Mfg, Co., 30 Dearborn St., CHICAGO, ILL.

First x-ray "movie" showing 5 views of a frog's leg

 1972: CT was invented by Godfrey Hounsfield of EMI Laboratories
 1989: Spiral CT was introduced

- WW-I: Sonar
- 1942: ultrasound in medicine
- 1963: Real-time ultrasound

- 1946: Felix Bloch and Edward M. Purcell independently described the NMR phenomenon
- 1973: Magnetic resonance imaging was first demonstrated on small test tube samples by Paul Lauterbur.

Lig. 2. Proton nuclear magnetic resonance reugnatorytatio of the object described in the text, using four relative orientations of object and gradients as diagrammed in Fig. 1.

Plain X-Ray Imaging

X-Ray Tube

0 0

Patient

X

2/12/2008

X-Ray Imaging Applications and Limitations

Computerized Tomography (CT)

Collect enough information to estimate and map x-ray attenuation

CT: Back-Projection Method

- Start from a projection value and back-project a ray of equal pixel values that would sum to the same value
- Back-projected ray is added to the estimated image and the process is repeated for all projection points at all angles
- With sufficient projection angles, structures can be somewhat restored

Ultrasound Imaging

- Acoustic energy is sent through the body
- Reflected energy is detected and used to construct an image

Ultrasound Imaging

Probe

X

Image on Monitor

18

Ultrasound Imaging Applications and Limitations

2/12/2008

Magnetic Resonance Imaging (MRI)

Applications of Medical Imaging

- Imaging of Anatomy
- Imaging of Flow
- Imaging of Function
- Imaging of Chemical Composition
- Image Guided Interventions
- Imaging of Connectivity

Imaging of Anatomy

Imaging of Blood Flow: MRA

- Time-of-flight or phase contrast
- Velocity encoding for quantitative results
- Can be done with or without contrast agents
- MIP visualization

Imaging of Blood Flow: X-ray

- Contrast agent must be injected
 Digital subtraction angiography
- Digital subtraction angiography

Imaging of Blood Flow: Ultrasound

- Doppler effect
- Spectrogram display
- Color flow mapping
 - Spatial resolution vs. velocity accuracy

Imaging of Function: BOLD

- Map changes with a physiological function
- Neuronal activation mapping

Imaging of Function: Perfusion

X

Imaging of Function: Tissue Harmonic Perfusion Imaging

- Contrast agent with microbubbles
- Processing the harmonic signals of microbubbles
 - enhances sensitivity of perfusion

analysis

Imaging of Function: PET

- Radioactive decay with positron generation
 - Annihilation
- Detection of resulting photons

4 months Post Chemotherapy

Imaging of Function: Cardiac MRI

- SPAMM tagging
- Tag tracking
- Quantitative wall
 viability assessment
- Fast and accurate analysis is a challenge

Imaging of Chemical Composition: Spectroscopy

Quantitative measurement of different metabolites in a specific area in the image

Multiple nuclei

Imaging of Chemical Composition: Limitations

- Acquisition takes a long time
 - Patient discomfort
 - Motion must be restricted
- High SNR is necessary
 - 1.5 T and Higher only
 - Special coils
- Detection of small signals within large clutter

Image-Guided Interventions

- Image-guided surgical planning
 - Minimally invasive brain surgeries
- Image-guided surgical procedures
 - Cathlab
 - Needle-Biopsy

Image-Guided Interventions: Hardware Limitations

- Special surgical tools
- Custom suite designs
- Custom imaging equipment

Image-Guided Interventions: Software Limitations

- Discrepancy between planning data and reality
- Visualization/image manipulation during procedure
- Automatic segmentation of relevant structures

Imaging of Connectivity: Anatomical Connecitivity

- Detection of nerve fiber orientations
- Tracking of fibers –
 "Tractography"

Imaging of Connectivity: Functional Connecitivity

- Detection of functional activations that happen to always coincide
- Limited by spatial and temporal resolutions

Image Interpretation: Factors

Matrix sizeresolution

Dynamic rangeGrayscale

Image Interpretation: Factors

Contrast

Radiography	Nuclear Medicine	Ultrasound	Computed Tomography	Magnetic Resonance
Atomic number	Activity	Velocity	Physical density	Proton density
Physical density	Distribution	Physical density	Electron density	Relaxation times
Thickness	Thickness	Thickness	Flow	Flow

Interpretation: Human Factors

Detection challenge

Recognition challenge

Interpretation challenge: Moving water without origin

Safety of Medical Imaging

- Ultrasound is known to be the safest
- MRI used with clinical systems is safe
- X-ray with small doses per year is safe
- Factors:
 - Difference between ionizing and non-ionizing radiations
 - Heat generated

Biomedical Imaging Trends

From

- Anatomic
- Static
- Qualitative
- Analog
- Nonspecific agents
- Diagnosis

To

- Physiobiochemical
- Dynamic
- Quantitative
- Digital
- Tissue-Targeted agents
- Diagnosis/Therapy

Resistance to New Technologies: CT Example

- In the early years of CT, an often-heard remark was "why would anyone want a new x-ray technique that when compared with traditional x-ray imaging:
 - yields 10 times more coarse spatial resolution
 - is 1/100 as fast in collecting image data
 - costs 10 times more

Resistance to New Technologies: CT Example

- EMI Ltd., the commercial developer of CT, was the first company to enter CT into the market.
 - They did so as a last resort, only after offering the rights to sell, distribute, and service CT to the major vendors of imaging equipment.
- The vendors rejected EMI's offer because they believed the market for CT was too small!

Summary

- Medical imaging is both a science and a tool to explore human anatomy and to study physiology and biochemistry.
- Medical imaging employs a variety of energy sources and tissue properties to produce useful images.
- Increasingly, clinical pull is the driving force in the development of imaging methods.
- Pushing the limits of resolution and accuracy is the focus of current research in this area
- Molecular biology and genetics are new frontiers for imaging technologies.

Thank You!

