
Cooperative Multitasking

If you disable Round-Robin Multitasking you must design and implement your tasks so that they work

cooperatively. Specifically, you must call the system wait function like os_dly_wait() function or the

os_tsk_pass() function somewhere in each task. These functions signal RTX Kernel to switch to another

task.

The following example shows a simple RTX program that uses Cooperative Multitasking. RTX Kernel starts

executing task 1. This function creates task 2. After the counter1 is incremented once, RTX Kernel switches to

task 2. After the counter2 is incremented once, RTX Kernel switches back to task 1. This process is repeated

indefinitely.

#include <RTL.h>

int counter1;

int counter2;

void task1 (void) __task;

void task2 (void) __task;

void task1 (void) __task {

 os_tsk_create (task2, 0); /* Create task 2 and mark it as ready */

 for (;;) { /* loop forever */

 counter1++; /* update the counter */

 os_tsk_pass (); /* switch to 'task2' */

 }

}

void task2 (void) __task {

 for (;;) { /* loop forever */

 counter2++; /* update the counter */

 os_tsk_pass (); /* switch to 'task1' */

 }

}

void main (void) {

 os_sys_init(task1); /* Initialize RTX Kernel and start task 1 */

 for (;;);

}

The difference between system wait function and os_tsk_pass is that system wait allows your task to wait for

an event, while os_tsk_pass switches to another ready task immediately.

 Note

� The os_tsk_pass will not switch to the next ready task, if this one has lower priority than the

currently running task.

Copyright (c) Keil - An ARM Company. All rights reserved.

Page 1 of 1RT Cooperative Multitasking

12/10/2007ms-its:C:\Keil\ARM\HLP\rtl.chm::/Kernel/ar_coop_multit.htm

