
Preemptive Multitasking

RTX Kernel is a preemptive multitasking operating system. If a task with a higher priority than currently running task

becomes ready to run, it will suspend the current running task.

A preemptive task switch occurs when:

� the task scheduler is executed from a system tick timer interrupt function. Task scheduler process the delays of

tasks. If a delay for a task with higher priority has expired, this task will continue to execute instead of currently

running task.

� an event is set for a higher priority task by a currently running task or by an interrupt service routine. The

currently running task will be suspended and the higher priority task continues to run.

� a token is returned to a semaphore and a higher priority task is waiting for one. The currently running task will

be suspended and a semaphore waiting task will continue to run. The token may be returned by a currently

running task or by an interrupt service routine.

� a mutex is released and a higher priority task is waiting for it. The currently running task will be suspended and

a task waiting for mutex will continue to run.

� a message is posted to a mailbox and a higher priority task is waiting for one. The currently running task will be

suspended and a message waiting task will continue to run. The message may be posted by a currently running

task or by an interrupt service routine.

� a mailbox is full, and a higher priority task is waiting to post a message to a mailbox. As soon as currently

running task or an interrupt service routine has popped out a message from a mailbox, a task waiting to post a

message will continue to run.

� a priority of currently running task has reduced. If other task is ready to run and has a higher priority than
currently running task, this task is suspended immediately and higher priority task resumes it's execution.

Take a look at the following example. Task job1 has a higher priority than task job2. When job1 is started, it creates

task job2 and enters os_evt_wait_or() function. Here it is suspended and execution continues with task job2. As

soon as job2 has set an event flag for job1, it is suspended and task job1 is resumed. Task job1 increments counter

cnt1 and suspends again calling os_evt_wait_or() function. Task job2 is resumed, increments counter cnt2 and sets an

event flag for job1. This process is repeated indefinitely.

#include <RTL.h>

OS_TID tsk1,tsk2;

int cnt1,cnt2;

void job1 (void) __task;

void job2 (void) __task;

void job1 (void) __task {

 os_tsk_prio (2);

 os_tsk_create (job2, 1);

 while (1) {

 os_evt_wait_or (0x0001, 0xffff);

 cnt1++;

 }

}

void job2 (void) __task {

 while (1) {

 os_evt_set (0x0001, job1);

 cnt2++;

 }

}

void main (void) {

 os_sys_init (job1);

 while (1);

}

Copyright (c) Keil - An ARM Company. All rights reserved.

Page 1 of 1RT Preemptive Multitasking

12/10/2007ms-its:C:\Keil\ARM\HLP\rtl.chm::/Kernel/ar_preempt_multit.htm

