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Angular Spectrum

2D Fourier transform of aperture
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[Propagation of Angular Spectrum
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Propagation as a Linear Spatial

Filter

Free space propagation transfer function
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[Fresnel Approximation

Paraxial (near field) approximation
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Fraunhofer Approximation

Far field approximation
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Examples

B Rectangular aperture

= Circular aperture




Examples

= Array transducer

o Separable
o Solve two 1D problems IR S



Field Calculation in Ultrasound

= Narrowband far-field analysis
o Totally unrealistic model
o Amazingly useful results
o will be used to introduce key points

= Wideband analysis

o Calculate at multiple wavelengths

o Weighted sum based on frequency spectrum of pulse
= Research field calculation software

o Field Il (free)
o PiezoFlex (commercial)



Beamformer: Role in an Imager

= Perhaps the most important building block.
o Soul of the machine?

= Probably the most expensive building block.
o 30 -50% of parts & labor of a scanner

Transmit
Beamformation

Image Receive
Formation Beamformation




Beamformer History

= Before the mid-70s
o Single element scanners, no beamformer necessary

= 1975-1980
o Array based systems
o Analog beamformation
o Typically 32 channels

= Mid 1980s
o High channel count systems (High = 128)
= Early 90s

o Digital beamformation



[Analog Beamformer ]
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Hybrid Analog/Digital Beamformer
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Digital Beamformer with Phase Shift
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True Digital Beamformer
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Digital Beamformer Hardware
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Acoustic Wave Propagation

Transmit voltages are typically in order of 100 V.
These create pressures of appr. several 100 KPa.

Typical tissue attenuation: 0.5 dB/(cm MHz)
o Example: 10 cm penetration @ 5 MHz -25 dB one-way

Backscatter from tissues -< 10% of incident
pressure

Transducer conversion efficiency —50 —75%

If we wish to display 40 dB of info, we have to be
able to handle > 100 dB of dynamic range



Typical System Organization
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Recelve Beamformer Functions

= Delay generation, dynamic and steering delays
= Apodization
= Summing of all delayed signals
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Focusing and Steering Delays
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Transmit Vectors and Focal Zones
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Image formation using transmits along vectors
and focal zones

MI<0.4 A0=66%



Apodization

= Mainrole
o apply a weighting function to aperture
o expand aperture w. receding wavefront
o maintain image uniformity N
o supply walking aperture
= Implementation

o multipliers
o truly complex control

= Highly beneficial impact on beam.




Types of Arrays and Beamformers

Linear array beamformer

o Generation of focusing delays

o Beam steering by element
selection

Curvilinear array beamformer

o Generation of focusing delays

o Beam steering by element
selection

Phased array beamformer

o Generation of focusing delays

o Beam steering by phasing




Arr metries

= Definition of azimuth, elevation

= Scanning angle shown, 0, in negative scan
direction.

= Similar definitions for a curved array




Delay Calculation from Geometry

Delay determination:
o simple path length difference

o reference point: phase
center

apply Law of Cosines
approximate for ASIC
Implementation

In some cases, split delay

Into 2 parts:

o beam steering

o dynamic focusing




Transmit Beamforming
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Resolution / Penetration Dilemma

Pulse
Amplitude

Transmit Energy Determines Penetration

A

N \_) Mechanical Index Limit
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> Pulse Length

Longer pulse gains penetration but
sacrifices resolution



[Coded Excitation

Transmitted Pulse Train

M-

- Sensitivity Increase
Received Pulse Train

W=

Coded Excitation improves sensitivity
without resolution tradeoff




Coded Excitation: Example
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Beam Compounding

Compounding
o suppress speckle to improve contrast resolution

Spatial compounding
o combine images from multiple angles

Frequency compounding
o combine images from different frequencies
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Targets of Ultrasound Imaging

= First level
o Gross anatomy
o basic measurements—e.g. fetal dimensions
o often tissue/fluid interfaces
o not very challenging

= Second level
o soft tissue characteristics—attenuation—speckle size
O minimum acoustic noise
o beam performance critical

= Third level

o 3D/4D volume & surface rendering
o Beam performance critical



Quality Measures

Image uniformity
large depth of penetration =

reasonably uniform tissue
texture

Ability to bring out subtle -
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Quality Control Phantoms
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Anatomy of an Ultrasound Beam

= Near field or Fresnel zone
= Far field or Fraunhofer zone
= Near-to-far field transition, L

x 10"

100

range (mm) array face (mm)



Anatomy of an Ultrasound Beam

= Spatial resolution, beamwidth
= Depth of field (DOF)
= F-number

unfocused focus at 100 mm
x 10 e x 10*
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Beamformer Optimization

Beam shape is improved by several processing
steps:

Transmit apodization

Multiple transmit focal locations
Dynamic focusing

Dynamic receive apodization
Post-beamsum processing

Example
o Upper frame: fixed transmit focus
o Lower frame: the above steps.

O O O O O




Channel Count Issues

= First 128 channel system introduced in 1983.

o Huge majority of high-end systems are still at 128
channels.

= Does it make sense to go higher?

o What's the cost/benefit trade-off?

o Wil the performance improve proportionately to the cost?
=  What are some of the reasons for increasing it?

o Elevation focusing

o Real-time 3D/4D

o Aberration correction



Elevation Beamforming

= Limited performance available
with 1D designs

o Poor beamformation away from
elevation focus.

o Limits on size of elevation aperture
due to fixed focus.

o Depth of focus inversely related to
aperture size.
= Slice thickness improvement
throughout image

o Expanding aperture, dynamic
focusing in elevation




Array Taxonomy

Elevation E —

1D 1.25D 1.5D 1.75D 2D

Aperture
Fixed Discrete  Dynamic Dynamic  Dynamic

Focus . _ . . .
Static Static Dynamic,  Dynamic, Dynamic,

Symmetric No Symmetry Steerable



Value of Elevation Focusing
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Channel Count Requirements

= Let N = azimuthal channel count desired, e.g. 128.
= 1.25D

o hno increase over N.

= 15D
o assume 5 rows (3 independent), 3N channels required

m 1.75D

o with 5 rows, 5N channels required

m 2D

o sparse arrays w. 256 channels currently available, for 4D
= For ergonomic scanning, no. of cables is < 256-512



3D/4D Imaging Physics Constraints

Speed of sound in body = 1540 m/sec

Image quality, Field of view, Volume update rate
o Can have any 2, not all 3

Example:

o 60°x 60°x 12 cm pyramid volume

o 1°beam spacing =3600 beams

o 12cmx 2/1540 m/s = 160 psec per beam
o =1.7 volumes/ sec



Mechanical 4D Probes

Transducer

Cable Drive
Fluid-Filled
Housing
Stepper Motor
Belt Drive

Cable
Optimized for high-speed



Concurrent Multi-Line Acquisition

Transmit beam is broader than receive beam

o transmit is static focus, usually high f-number for max
depth of field

Create 2 —16 simultaneous receive beams within
the transmit beam

Substantial increase in volume rate!
Essential for effective 4D imaging



Harmonic Imaging

= Perhaps most important innovation of the last 10 yrs
o Now default mode in most cardiac scanners

= Discovery due to two major sources:
o harmonic imaging for contrast agents
o transducer bandwidth increases

= Arises from pressure dependence of sound speed
o Compressional wave is faster than rarefactional

= Need to understand via simulations.



Harmonic Imaging: Beamforming

During propagation, harmonics are formed.
Rate of generation of 2" harmonic proportional to p?2

This is equivalent to having an extra beamformer to
narrow the beam shape.

Beamformer requirements:

o added transmit flexibility

o Increased filtering capacity

o Higher receive signal bandwidth



Harmonic Imaging: Advantages

=  Harmonics formed at main
lobe \

o narrower beams
o lower sidelobes

= Mmuch acoustic noise
generation at fundamental
o refraction from fat layers

o reverberations near fat/muscle |
layers

1 1 1 1 I 1
0 05 1 15 2 25 3
lateral distance (mm)

= Optimization of
beamformers may be
necessary




Harmonic Imaging Example 1
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Harmonic Imaging Example 2

RT BR 730 1B RAD




Harmonic Imaging with Contrast

= Ultrasound contrast agent
o Gas filled microbubbles
o Strong harmonic response
= Main clinical goal: perfusion
o Myocardial viability
o Presence of tumors

= Tissue harmonics confuse the
ISsue

= Trend toward low frequency
(1.5 MH2z) operation




Comparison between Tissue and
Contrast Harmonic Imaging

Tissue Harmonics Contrast Harmonics

Goal: best tissue Goal: Show distribution

Images of contrast agents

Methods Methods

o Maximize harmonic o Minimize propagation
energy harmonic energy

o Higher f-numbers to o Transmit harmonic
allow harmonic energy energy that cancels
to accumulate propagation related

o Consider non-spherical harmonics.
focusing o Alternative phasing

scheme



Focusing Theory

Input plane Lens Focal plane

Fraunhofer diffraction
pattern at focal depth
when d=0
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Focusing Implementation

= Reciprocity theorem
o Beamform at Transmit = beamform at Receive
o Overall beamform = Trans beamform x Rec beamform

= Static focusing
o Static focal point
o Used in transmission

= Dynamic focusing
o Multiple focal points

o Used In reception
o ldeally, focused in all points



Phase Aberration

Present ultrasound imaging

O

O

People are bags of water !
Crude approximation

Practical Imaging

O

O

Fat and muscle degrade quality

Time-delay Errors from the
abdominal wall are 10-50 Times
Larger than beamformer delay
quanta’

)

\




Phase Aberration

= All beamformers use an assumption of constant
speed of sound (1540 m/s in all ultrasound systems)
o This assumption is not valid.

= In soft tissues, we have these speeds:
fat 1440 m/s

liver1510

Kidney1560

musclel570 (skeletal)

Tumors1620

= This variation limits further spatial & contrast
resolution improvements.

O O O O O



Phase Aberration

Point-like scatterer

Spherical wavefronts

Aberrating Layer, (C ¢ C 0

Transducer
Geometric beamforming
delays

Channel data poorly
aligned



Phase Aberration Solutions

= Phase screen models
o all aberrating sources near skin line
o deaberration can occur via time shifting of the echoes
o amount of shift determined by correlations.

= Distributed aberrators

o aberrating sources away from skin (as well as near it).
Interference among refracted beams occurs.

o far more complex deaberration methods than time shifting
IS needed.
= Inverse filtering
o Assume a common source to all echoes
o Blind systems identification



Phase Aberration Correction Results

Pancreas and
Superior Mesenteric Artery

Fat and
muscle
layers

_.Pancreas

~ Splenic
vein

\/

N\ SMA

Uncorrected Corrected

Uncorrected Corrected SMA 4.4 dB dark_er, pancreas 1.4 dB
brighter



Remaining Beamformer Issues

Expanding aperture receive beamforming
Synthetic aperture beamforming

Digital beamforming

o Hilbert transformation

o Fractional period delay filters
o Sampling issues



Problem Assignments

At the end of second lecture on Beamforming, there
will be a problem assignment for you. Problems

include programming tasks on Matlab or “mini-
projects”.



