

Topic 2 (lecture 3) Phase Aberration Correction

Focusing Theory

Input plane Focal plane Lens Fraunhofer diffraction $\overline{\mathbb{R}^n}$ \mathbf{y} $\mathbf v$ pattern at focal depth Y_{X} when $d=0$ (u_1,v_1) $[-(d/f)u_{1,-}(d/f)v_{1}]$ Object $t_l(x, y) = \exp \left[-j\frac{k}{2f}(x^2 + y^2) \right].$

$$
U_f(u,v) = \frac{\exp\left[j\frac{k}{2f}(u^2+v^2)\right]}{j\lambda f} \iint_{-\infty}^{\infty} U_l(x,y) \exp\left[-j\frac{2\pi}{\lambda f}(xu+ yv)\right] dx dy.
$$

Focusing Implementation

- $\overline{\mathbb{R}}$ Reciprocity theorem
	- \circ Beamform at Transmit = beamform at Receive Ω
	- \bigcap Overall beamform = Trans beamform x Rec beamform
- \mathcal{L}^{max} Static focusing
	- o Static focal point Ω
	- Ω Used in transmission
- $\mathcal{L}_{\mathcal{A}}$ Dynamic focusing
	- Multiple focal points Ω
	- \circ Used in reception
	- \circ Ideally, focused in all points

Phase Aberration

- $\mathcal{C}^{\mathcal{A}}$ Present ultrasound imaging
	- Ω People are bags of water !
	- \circ Crude approximation

- \mathbb{R}^3 Practical Imaging
	- o Fat and muscle degrade quality \circ
	- \circ Time-delay Errors from the abdominal wall are **10-50 Times Larger than beamformer delay quanta!**

 \circ

Phase Aberration

- All beamformers use an assumption of constant speed of sound (1540 m/s in all ultrasound systems)
	- Ω This assumption is not valid.
- $\mathcal{L}_{\mathcal{A}}$ In soft tissues, we have these speeds:
	- Ω fat 1440 m/s
	- Ω liver1510
	- Ω kidney1560
	- \circ muscle1570 (skeletal)
	- Ω Tumors1620
- $\mathcal{L}_{\mathcal{A}}$ This variation limits further spatial & contrast resolution improvements.

Phase Aberration

 \circ

Point-like scatterer

Spherical wavefronts

Aberrating Layer, $c \neq c_0$ Transducer Geometric beamforming delays

Channel data poorly aligned

Phase Aberration Solutions

- Phase screen models
	- Ω all aberrating sources near skin line
	- Ω deaberration can occur via time shifting of the echoes
	- Ω amount of shift determined by correlations.
- $\overline{\mathbb{R}^n}$ Distributed aberrators
	- \circ aberrating sources away from skin (as well as near it). Interference among refracted beams occurs.
	- Ω far more complex deaberration methods than time shifting is needed.
- $\overline{}$ Inverse filtering
	- Ω Assume a common source to all echoes
	- Ω Blind systems identification

Phase Aberration Techniques

Phase Aberration Correction Results

Pancreas and **Superior Mesenteric Artery**

Uncorrected Corrected

SMA 4.4 dB darker, pancreas 1.4 dB brighter

Synthetic Aperture

- Synthetic-aperture radar (SAR) is a form of radar in which multiple radar images are processed to yield higher resolution images than would be possible by conventional means.
- \mathbb{R}^3 SAR has seen wide applications
	- \overline{O} remote sensing
	- \bigcap mapping.

Synthetic Aperture in Ultrasound

Fig.1: SAFT imaging method

Fig.2: MSAF imaging method

Synthetic Aperture in Ultrasound

Fig.3: STA imaging method

Fig.4: SRA imaging method

Synthetic Aperture in Ultrasound

Fig.5: Sparse STA imaging method

Concurrent Multi-Line Acquisition

- Transmit beam is broader than receive beam
	- o transmit is static focus, usually high f-number for max Ω depth of field
- L. ■ Create 2 –16 simultaneous receive beams within the transmit beam
- **Substantial increase in volume rate!**
- \mathbb{R}^3 Essential for effective 4D imaging

Conventional Focused Transmit

Synthetic Transmit Aperture (STA): No Spatial Encoding

M transmit elements, N receive elements

Synthetic Transmit Aperture (STA): With Spatial Encoding

M transmit elements. N receive elements

Transmit Encoding / Decoding : Hadamard Matrix

 Hadamard matrix is a square matrix whose entries are either +1 or −1 and whose rows are mutually orthogonal

Transmit Encoding / Decoding : Hadamard Matrix Example

4 Channel Hadamard encoding/decoding

1

1

1

1

s

Received signals from 4 excitations:

r

Received $\overline{}$ $\overline{}$ −− $\overline{}$ r_1 1 1 1 1 s_1 1111*sr*Mixed Signals $\overline{}$ $\overline{}$ ⋅ $\overline{}$ $\overline{}$ −−= $\overline{}$ r_4 $\begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}$ s_4 3 2 43 2 1 -1 -1 1 1111*ssrr*

Decoded Individual Line Signals $\overline{}$ $\overline{}$ $\sqrt{}$ = $\overline{}$ $\overline{}$ ⋅ $\overline{}$ $\overline{}$ −− −−= $\overline{}$ $\overline{}$ $\overline{}$ 43 2 1 43 2 1 * 4* 3 * 2 * 1 44441 1 1 111111111111*ssssrrrrssss*

Transmit Encoding / Decoding : SNR Advantage

- Independent and identically distributed noise in all received signals (i.i.d.)
- L. Decoding Process
	- \circ Signals add
	- Ω Noise cancel
	- \circ \circ Averaging effect leading to $\sqrt{\mathsf{N}}$ improvement in SNR

$$
\begin{bmatrix} s_1^* \\ s_2^* \\ s_3^* \\ s_4^* \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix} = \begin{bmatrix} 4s_1 \\ 4s_2 \\ 4s_3 \\ 4s_4 \end{bmatrix}
$$

Problem Assignments

- \mathbb{R}^3 At the end of this lecture, there will be a problem assignment for you on the web site.
- \mathbb{R}^3 Problems include programming tasks on Matlab or "mini-projects".
- $\mathcal{L}_{\mathcal{A}}$ Problem solutions are due in 3 weeks.