Ultrasound Bioinstrumentation

Topic 4: Lectures 6,7,8 Doppler Ultrasound

The Doppler Effect

 Christian Doppler described the change in wave frequency because of motion of source/receiver

$$\Delta v = 2v_0 \left(\frac{v}{c}\right) \cos \theta$$

Doppler Application Example

Speed control on highways

- Fixed target (v=0)
- Transmitted signal is sinusoidal

$$s_{t}(t) = \sqrt{2P_{t}} \cos \omega_{c} t = \sqrt{2} \operatorname{Re} \left[\sqrt{P_{t}} e^{j\omega_{c} t} \right], \quad -\infty < t < \infty.$$

$$s_{r}(t) = \sqrt{2} \operatorname{Re} \left\{ \sqrt{P_{t}} \sum_{i=1}^{K} g_{i} \exp \left[j\omega_{c}(t-\tau) + \theta_{i} \right] \right\}.$$

$$\tau \stackrel{\Delta}{=} \frac{2R}{c}.$$

Central limit theorem

$$s_{r}(t) = \sqrt{2} \operatorname{Re} \left\{ \sqrt{P_{t}} \tilde{b} \exp \left(j\omega_{c}(t - \tau) \right) \right\},$$
$$E\{|\tilde{b}|\} = \sqrt{\frac{\pi}{2}} \sigma_{b}$$
$$F\{|\tilde{b}|^{2}\} = 2\sigma_{b}^{2}.$$

Assume reflection process is linear

$$s_t(t) = \sqrt{2} \operatorname{Re} \left[\sqrt{E_t} \tilde{f}(t) e^{j\omega_c t} \right]$$
$$s_r(t) = \sqrt{2} \operatorname{Re} \left[\sqrt{E_t} \tilde{b} \tilde{f}(t - \tau) e^{j\omega_c t} \right].$$

Slowly moving point target

$$R(t)=R_0-vt.$$

$$s_t(t) = \sqrt{2} \operatorname{Re} \left[\sqrt{E_t} \tilde{f}(t) e^{j\omega_c t} \right]$$

 $s_r(t) = \sqrt{2} \operatorname{Re} \left[\sqrt{E_t} \, \tilde{b} \tilde{f}(t - \tau(t)) \exp \left[j \omega_c (t - \tau(t)) \right] \right],$

$$R\left(t - \frac{\tau(t)}{2}\right) = R_0 - v\left(t - \frac{\tau(t)}{2}\right).$$
$$\tau(t) = \frac{2R(t - \tau(t)/2)}{c}.$$
$$\tau(t) = \frac{2R_0/c}{1 + v/c} - \frac{(2v/c)t}{1 + v/c}.$$

• For velocities of interest $\frac{v}{c} \ll 1$. Then, $\tau(t) \simeq \frac{2R_0}{c} - \frac{2v}{c} t \Delta \tau - \frac{2v}{c} t$. Hence,

$$s_r(t) = \sqrt{2} \operatorname{Re}\left[\sqrt{E_t} \tilde{b}\tilde{f}\left(t - \tau + \frac{2v}{c}t\right) \exp\left[j\omega_c\left(t + \frac{2v}{c}t\right)\right]\right]$$

- Target velocity has two effects:
 - Compression or stretching of the complex envelope
 - Shift in carrier frequency
- In the famous Doppler shift equation, we ignore the first effect
 - Describes modes close to CW Doppler
 - May lead to errors when we deviate from ideal sinusoidal excitation
 - Particularly important source of error for PW Doppler

Optimum Doppler Receiver

Known Doppler Shift

Unknown Doppler Shift

RBCs in Ultrasound Imaging

- Hardly visible in ultrasound images
 - Scattering because of its very small size

Red blood cell

Carotid artery with calcified plaque

Scattering from Blood

Doppler Shift from Moving Blood

 $\Delta \nu = 2\nu_0 \left(\frac{\nu}{c}\right) \cos \theta$

Estimation of Pressure in Vessels

Bernouli's equation describes pressure drop due to increase in kinetic energy

Pressure drop (gradient) : P1 - P3 = 4 V2²

Example: 80% aortic-stenosis V1= 1 m/s V2 = 5 m/s pressure-gradient 4*5*5 = 100 mmHg Normal aortic pressure 120 mmHg corresponds to 220 mmHg ventricular pressure!

Continuity Equation to Assess Flow

Area reduction depends only on the velocity V2/V1; independent of diameter and angle

Continuous Wave Doppler

Doppler Power Spectrum Model

- Central Limit theorem
 - Signals from RBCs add up to Gaussian distribution

Doppler Power Spectrum Model

Doppler Spectrogram

Frequency vs. Time Resolution Trade-Off

Window length 64

Window length 16

Time-bandwidth product: $\Delta f_d * \Delta T = l$

Clutter Noise

Rectangular window

Hamming window

High pass filter

Interfering sidelobes from clutter signal

Pulsed Wave (PW) Doppler

Signal from all scatterers within the ultrasound beam

Signal from a limited sample volume

PW Doppler Signal Model

PW Doppler 2D Signal Model

Aliasing in PW Doppler

Aliasing Example: Subclavian Artery

Velocity waveform restored by stacking

Comparison of Doppler Technologies

Торіс	Fixed CW Doppler	Steerable CW Doppler	PW Doppler
Resolution	At intersection of transmit and receive	At intersection of transmit and receive	Range-gated
Focusing	Fixed focus and amplitude	Electronic focusing with gain	Electronic focusing with gain
Steering	Mechanical	Electronic	Electronic
Visual aid for placement	None	Line, duplex, triplex imaging	Gate, duplex, triplex imaging
Aliasing	No	No	Yes
Absorption and diffraction	At intersection of transmit and receive	At intersection of transmit and receive	At gate position

Color Flow Imaging (CFI)

- Displays a color coded map of the axial blood velocity in a 2-D or 3-D region of interest
- Used in a wide range of diagnostic contexts in today's hospitals

2-D CFI of a carotid bifurcation

3-D CFI of a mitral regurgitation jet

CFI Technology History

 Technology and research progressed from singlerange gate to multi-range gated Doppler, and further to 2-D Doppler imaging

Color Flow Imaging (CFI) Chain

- CFI data acquisition
 - Scanning operation and pulse sequence
- Clutter filtering (wall filtering)
 - Attenuating interfering signal from stationary tissue
- Doppler parameter estimation
 - Estimation of Doppler power, mean-frequency, and bandwidth
- Display
 - Color encoding of Doppler parameters

Clutter Filtering

- Clutter is signal from surrounding tissue due to beam side lobes and reverberations
 - Can have 60-80 dB higher signal power than blood
- Blood typically has a higher velocity than tissue, i.e. higher Doppler shifts
 - The two components can thus be separated by high-pass filtering the Doppler signal

Clutter Filter Design

- Clutter filters should have a high stop-band attenuation (60-80 dB) to sufficiently attenuate clutter
- Clutter filters should have a short transition region to avoid removing signal from blood

Data Acquisition in CFI

scanning direction

time

Mechanical scanning

+ No settling time for clutter filter

- Low frame rate

Electronic packet scanning

- Settling time for clutter filter
- + Flexible PRF without loss in frame rate

Electronic continuous scanning

- + No settling time for clutter filter
- High frame rate, but low PRF

CFI Interleaved Packet Acquisition

- Overall frame rate increased by the interleave factor
- Maximum PRF limited by image depth, multiple reflections, hardware
- Especially important when imaging low-velocity flow, i.e. with a low user chosen PRF such as peripheral vascular imaging

Packet / Ensemble Size in CFI

- Increasing the packet size in CFI will:
 - + Lead to more efficient clutter filtering
 - + Lower the variance of the Doppler parameters
 - Reduce the overall frame rate dramatically
 - May lead to visible artificial lags of the flow field in the image from one side of the image to the other
- How many samples are necessary?
 - Application dependent, typically 8-16 samples
 - Cardiac imaging (deep, high dynamics): packet size = 8-10
 - Vascular imaging (shallow, lower dynamics): packet size = 10-16
 - Abdominal imaging (deep, lower dynamics): packet size = 10-12

SNR Considerations

Signal-to-noise is one of the most crucial design criteria in Doppler acquisition

- Similar as for PW-Doppler: total SNR ~ 1/B, spectral SNR ~ 1/B²
- The received signal from blood is proportional to the length of the transmitted pulse (incoherent sum of burstlets)
 - Increase the number of pulse cycles
 - Decrease the pulse center frequency
- The optimal receive filter is approximatively given by a rectangular filter with length equal to the emitted pulse
 - Boxcar integrator over the pulse length
- Optimize TGC to achieve a constant noise floor throughout depth

Doppler Signal Model

 The Doppler spectrum may consists of three components, clutter c, blood b, and thermal noise n

x = c + n + b $x = [x(1),...,x(N)]^{T}$

- Typical clutter/signal level: 20 80 dB
- Signal from blood is characterized by a complex Gaussian process

Doppler Parameter Estimation

Doppler parameter estimation in CFI has focused on the first three moments of the Doppler spectrum, which equals the mean power, mean frequency, and bandwidth (rms):

$$P = \int_{-\infty}^{\infty} G(\omega) d\omega \qquad \overline{\omega} = \frac{\int_{-\infty}^{\infty} \omega \cdot G(\omega) d\omega}{\int_{-\infty}^{\infty} G(\omega) d\omega} \qquad B_{ms}^{2} = \frac{\int_{-\infty}^{\infty} (\omega - \overline{\omega})^{2} \cdot G(\omega) d\omega}{\int_{-\infty}^{\infty} G(\omega) d\omega}$$

However: estimating the Doppler power spectrum and integrating is not a practical solution.

Time (phase) domain approaches has several qualities

- Less computationally expensive
- Robust in low signal-to-noise ratios
- Velocity range covering the full Nyquist spectrum width

Time Domain Formulation

The **Wiener-Khinchin** formula relates the autocorrelation function and the power spectral density function:

$$R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) e^{j\omega\tau} d\omega$$

Derivatives with respect to tau gives:

$$\dot{R}(\tau) = \frac{j}{2\pi} \int_{-\infty}^{\infty} \omega G(\omega) e^{j\omega\tau} d\omega \qquad \qquad \ddot{R}(\tau) = \frac{-1}{2\pi} \int_{-\infty}^{\infty} \omega^2 G(\omega) e^{j\omega\tau} d\omega$$

Yields time-domain expressions for power, mean frequency, and bandwidth (rms):

$$\mathbf{P} = \mathbf{R}(0) \qquad \overline{\mathbf{\omega}} = -j\frac{\dot{\mathbf{R}}(0)}{\mathbf{R}(0)} \qquad \mathbf{B}^2 = \left[\frac{\dot{\mathbf{R}}(0)}{\mathbf{R}(0)}\right]^2 - \frac{\ddot{\mathbf{R}}(0)}{\mathbf{R}(0)}$$

Autocorrelation Method

However: Accurate estimates of the derivatives of the autocorrelation function can be difficult to achieve. Therefore an alternative formulation is used:

Correlation function in polar form: $R(\tau) = A(\tau) \exp[j\phi(\tau)]$

Yields the following mean frequency and bandwidth estimate:

$$\overline{\omega} = -j\frac{\dot{R}(0)}{R(0)} = \dot{\phi}(0) \qquad \overline{\omega} \cong \frac{\phi(T_{PRF}) - \phi(0)}{T_{PRF}} = \frac{1}{T_{PRF}} \arg[R(T_{PRF})]$$
$$B^{2} = -\frac{\ddot{A}(0)}{A(0)} \approx \frac{2}{T_{PRF}^{2}} \left[1 - \frac{A(T_{PRF})}{A(0)}\right] = \frac{2}{T_{PRF}^{2}} \left[1 - \frac{|R(T_{PRF})|}{R(0)}\right]$$

In other words: The power, mean frequency and bandwidth of the Doppler spectrum can be found using magnitude and phase estimates of the correlation function at lags 0 and 1 (T_{PRF})

Properties of Autocorrelation Method

- Robust in low signal-to-noise environments
 - Superior to FFT-based method below ~15 dB, similar above ~15dB
- Computationally inexpensive
 - Ideally, in a noise free environment only two complex samples are needed to estimate the mean frequency
 - In practice more samples are needed to 1) attenuate clutter, and 2) reduce the variance of the correlation estimates

Cross-Correlation Method

 The velocity is proportional to the RF time shift between successive pulses

Properties of Cross-Correlation Method

- No aliasing under ideal circumstances
 - Signal decorrelation and lateral movement will limit this however
- Best performance for wide-band pulses
 - Higher resolution / lower penetration
- Axial sampling determines jitter error
 - Interpolation needed to find the true correlation maximum
- Time shift does not directly transfer to mean-velocity
- Computationally expensive compared to autocorrelation method

Autocorrelation vs. Cross-Correlation

Example:

In vivo Comparison of autocorrelation and crosscorrelation for data from the human subclavian artery

The two methods are approximatively equal for narrow-band pulses and with radial averaging

Doppler Velocity Estimation Limitations

- Only the axial velocity component is measured
 - Measured velocities depend on the angle between the ultrasound beam and vessel of interest →angle-dependency artifacts
 - For transverse flow, the mean Doppler shift is centered around zero, and a substantial part is removed by the clutter filter
- Aliasing artifacts
 - A limited velocity range can be measured before *aliasing* occurs, determined by the PRF
 - Using a higher PRF increases the maximum limit, but sensitivity to low velocities is then reduced (in practice due to clutter filter)
- Bias / variance
 - The bias and variance can in practice be quite high, and varies in space and time → the use of CFI has mainly been of qualitative nature

Patient Safety in Doppler Ultrasound

- Potential hazardous heating and mechanical effects restrict the allowed acoustic output of ultrasonic imaging equipment
- Acoustic output is restricted by one of the following:
 - Mechanical index (MI), a measure of mechanical effects
 - Spatial peak temporal average intensity (Ispta), total output power, or thermal index (TI)
 - Transducer surface temperature
- Heating effects are averaged for combinations of modes (duplex / triplex modes). Mechanical effects are determined by the modality with the highest value.

The outcome: The sensitivity / penetration in Doppler modes may be severly punished from these restrictions

Next Lecture

New Ultrasound Imaging System Design Trends